The Hard X-ray Imager(HXI)payload,a component of China’s Advanced Space-based Solar Observatory satellite,is designed to observe solar X-ray emissions in the 30-200 keV range,with the aim of investigating nonthermal ...The Hard X-ray Imager(HXI)payload,a component of China’s Advanced Space-based Solar Observatory satellite,is designed to observe solar X-ray emissions in the 30-200 keV range,with the aim of investigating nonthermal physical processes during solar flares.Before launch,Geant4 simulations were employed to assess the onorbit background of the HXI instrument,evaluating its performance and potential to achieve its scientific objectives.This study addresses issues identified in previous simulations and conducts further analyses to examine the distribution of background counts across the 99 detectors.The results demonstrate alignment between simulations and observations at low and medium geomagnetic latitudes;however,challenges persist at high geomagnetic latitudes due to limitations in the current albedo photon model.This investigation provides insights into background sources from various particles,enhances understanding of space background characteristics,and offers guidance for background subtraction in imaging processes.展开更多
Early multiwavelength observations offer crucial insights into the nature of the relativistic jets responsible for gamma-ray bursts and their interaction with the surrounding medium.We present data of GRB 240825A from...Early multiwavelength observations offer crucial insights into the nature of the relativistic jets responsible for gamma-ray bursts and their interaction with the surrounding medium.We present data of GRB 240825A from 17 space-and ground-based telescopes/instruments,covering wavelengths from NIR/optical to X-ray and GeV,and spanning from the prompt emission to the afterglow phase triggered by Swift and Fermi.The early afterglow observations were carried out by SVOM/C-GFT,and spectroscopic observations of the afterglow by GTC,VLT,and TNG determined the redshift of the burst(z=0.659)later.A comprehensive analysis of the prompt emission spectrum observed by Swift-BAT and Fermi-GBM/LAT reveals a rare and significant high-energy cutoff at 76 MeV.Assuming this cutoff is due toγγabsorption allows us to place an upper limit on the initial Lorentz factor,Γ_(0)<245.The optical/NIR and GeV afterglow light curves can be described by the standard external shock model,with early-time emission dominated by a reverse shock(RS)and a subsequent transition to forward shock(FS)emission.Our afterglow modeling yields a consistent estimate of the initial Lorentz factor(Γ_(0)∼234).Furthermore,the RS-to-FS magnetic field ratio(R 302B)indicates that the RS region is significantly more magnetized than the FS region.An isotropic-equivalent kinetic energy of E_(k,iso)=5.25×10^(54) erg is derived,and the correspondingγ-ray radiation efficiency is estimated to beη_(γ)=3.1%.On the other hand,the standard afterglow model cannot reproduce the X-ray light curve of GRB 240825A,calling for improved models to characterize all multiwavelength data.展开更多
Supernova remnants(SNRs)interacting with molecular clouds(MCs)are recognized as the sources of γ-rays and cosmic rays in the Galaxy.Based on the SNR-MC system,this study establishes a particle cumulative diffusion mo...Supernova remnants(SNRs)interacting with molecular clouds(MCs)are recognized as the sources of γ-rays and cosmic rays in the Galaxy.Based on the SNR-MC system,this study establishes a particle cumulative diffusion model to investigate the mechanism by which high-energy protons escaping from SNRs interact with dense MCs through proton–proton interactions to produce high-energyγ-rays.Using the W51 complex,a typical star-forming region,as a research sample,we analyze the production and propagation characteristics of γ-rays.By employing the Exponential Cutoff Power-Law model and the Markov Chain Monte Carlo method,we fit theγ-ray observational data of W51C,successfully constraining the key physical parameters.Additionally,we systematically search for 1LHAASO sources spatially coincident with SNR-MC systems to explore the potential origins of ultra-high-energy(UHE) γ-ray sources.The results indicate that the radiation characteristics of the UHE γ-ray sources are highly consistent with the SNR-MC systems,further supporting their candidacy as PeVatrons in the Galaxy.展开更多
The study of high-energy gamma-ray emission from gamma-ray bursts(GRBs)involves complex synchrotron radiation and synchrotron self-Compton(SSC)scattering mechanisms with multiple parameters exhibiting a wide distribut...The study of high-energy gamma-ray emission from gamma-ray bursts(GRBs)involves complex synchrotron radiation and synchrotron self-Compton(SSC)scattering mechanisms with multiple parameters exhibiting a wide distribution.Recent advancements in GRB research,particularly the observation of very high energy(VHE,>100 Ge V)radiation,have ushered in a new era of multiwavelength exploration,offering fresh perspectives and limitations for understanding GRB radiation mechanisms.This study aimed to leverage VHE observations to refine constraints on synchrotron+SSC radiation from electrons accelerated by forward shocks.By analyzing two external environments—the uniform interstellar medium and stratified stellar wind medium,we conducted spectral and variability fitting for five specific bursts(GRB 180720B,GRB 190114C,GRB 190829A,GRB 201216C,and GRB 221009A)to identify the optimal parameters characterizing these events.A comparative analysis of model parameter distributions with and without VHE radiation observations reveals that the magnetic energy equipartition factorεBis more concentrated with VHE emissions.This suggests that VHE emissions may offer greater constraints on this microphysical parameter.Additionally,we found that the energy budget between VHE and ke V–Me Vγ-ray emissions under the SSC radiation exhibits an almost linear relationship,which may serve as a tool to differentiate radiation mechanisms.We anticipate future statistical analyses of additional VHE bursts to validate our findings.展开更多
We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via...We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via HEASOFT),we extracted light curves for each observational ID and for their aggregation.Countrate histograms were fitted using various statistical distributions;fit quality was assessed by chi-squared and the Bayesian Information Criterion.The first observational segment is best described by a Gaussian distribution(χ^(2)=68.4;BIC=7651.2),and the second by a Poisson distribution(χ^(2)=33.5;BIC=4413.3).When all segments are combined,the lognormal model provides the superior fit(χ^(2)=541.9;BIC=34365.5),indicating that the full data set’s count rates exhibit the skewness expected from a multiplicative process.These findings demonstrate that while individual time intervals conform to discrete or symmetric statistics,the collective emission profile across multiple observations is better captured by a lognormal distribution,consistent with complex,compounded variability in GRB afterglows.展开更多
Very low frequency(VLF)signals are propagated between the ground-ionosphere.Multimode interference will cause the phase to show oscillatory changes with distance while propagating at night,leading to abnormalities in ...Very low frequency(VLF)signals are propagated between the ground-ionosphere.Multimode interference will cause the phase to show oscillatory changes with distance while propagating at night,leading to abnormalities in the received VLF signal.This study uses the VLF signal received in Qingdao City,Shandong Province,from the Russian Alpha navigation system to explore the multimode interference problem of VLF signal propagation.The characteristics of the effect of multimode interference phenomena on the phase are analyzed according to the variation of the phase of the VLF signal.However,the phase of VLF signals will also be affected by the X-ray and energetic particles that are released during the eruption of solar flares,therefore the two phenomena are studied in this work.It is concluded that the X-ray will not affect the phase of VLF signals at night,but the energetic particles will affect the phase change,and the influence of energetic particles should be excluded in the study of multimode interference phenomena.Using VLF signals for navigation positioning in degraded or unavailable GPS conditions is of great practical significance for VLF navigation systems as it can avoid the influence of multimode interference and improve positioning accuracy.展开更多
In spite of the importance of studying the cosmic generation of heavy elements through the r-process,the detection of a kilonova resulting from the merger of a neutron star binary is still a challenging task.In this p...In spite of the importance of studying the cosmic generation of heavy elements through the r-process,the detection of a kilonova resulting from the merger of a neutron star binary is still a challenging task.In this paper,we show that the Visible Telescope(VT)onboard the ongoing SVOM space mission is powerful for identifying kilonova candidates associated with short gamma-ray bursts up to a distance of 600 Mpc.A significant color variation,turning blue and then turning red,is revealed by calculating the light curves in both red and blue channels of VT by a linear combination of an afterglow and an associated kilonova.The maximum color variation is as high as~0.5-1 mag,which is far larger than the small photometry error of~0.2 mag of VT for a point source with a brightness of 23 mag.Up to a distance of 600 Mpc,~1-2 kilonova candidates per year are predicted to be identified by VT.展开更多
Theγ-ray emitting compact symmetric objects(CSOs)PKS 1718-649,NGC 3894,and TXS 0128+554 are lobedominated in the radio emission.In order to investigate theirγ-ray radiation properties,we analyze the~14yr Fermi/LAT o...Theγ-ray emitting compact symmetric objects(CSOs)PKS 1718-649,NGC 3894,and TXS 0128+554 are lobedominated in the radio emission.In order to investigate theirγ-ray radiation properties,we analyze the~14yr Fermi/LAT observation data of the three CSOs.They all show the low luminosity(1041-1043 erg s-1)and no significant variability in theγ-ray band.Theirγ-ray average spectra can be well fitted by a power-law function.These properties ofγ-rays are clearly different from theγ-ray emitting CSOs CTD 135 and PKS 1413+135,for which theγ-rays are produced by a restarted aligned jet.In the L_(γ)-Γ_(γ)plane,the three CSOs are also located at the region occupied by radio galaxies(RGs)while CTD 135 and PKS 1413+135 display a similar feature to blazars.Together with a similar radio emission property toγ-ray emitting RGs Cen A and Fornax A,we speculate that theγ-rays of the three CSOs stem from their extended mini-lobes.The broadband spectral energy distributions of the three CSOs can be well explained by the two-zone leptonic model,where theirγ-rays are produced by the inverse Compton process of the relativistic electrons in extended regions.By extrapolating the observed Fermi/LAT spectra to the very high energy band,we find that TXS 0128+554 among the three CSOs may be detected by the Cherenkov Telescope Array in the future.展开更多
The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a com...The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a comprehensive investigation on the first digit distributions of the duration,fluence,and energy flux of gamma-ray bursts (GRBs) for the first time.For a complete GRB sample detected by the Fermi satellite,we find that the first digits of the duration and fluence adhere to Benford’s law.However,the energy flux shows a significant departure from this law,which may be due to the fact that a considerable part of the energy flux measurements is restricted by lack of spectral information.Based on the conventional duration classification scheme,we also check if the durations and fluences of long and short GRBs (with duration T_(90)>2 s and T_(90)≤2 s,respectively) obey Benford’s law.We find that the fluences of both long and short GRBs still agree with the Benford distribution,but their durations do not follow Benford’s law.Our results hint that the long–short GRB classification scheme does not directly represent the intrinsic physical classification scheme.展开更多
The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-...The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-resolved spectral analysis of 78 bright long GRB samples detected by Fermi/Gamma-ray Burst Monitor.A total of 1490 spectra were obtained and their properties were studied using a typical Band-shape model.First,the parameter distributions of the time-resolved spectrum are given as follows:the low-energy spectral indexα~-0.72,high-energy spectral indexβ~2.42,the peak energy E_(p)~221.69 keV,and the energy flux F~7.49×10^(-6)erg cm^(-2)s^(-1).More than 80%of the bursts exhibit the hardest low-energy spectral indexα_(max),exceeding the synchrotron limit(-2/3).Second,the evolution patterns of a and E_(p)were statistically analyzed.The results show that for multi-pulse GRBs the intensity-tracking pattern is more common than the hard-to-soft pattern in the evolution of both E_(p)andα.The hard-to-soft pattern is generally shown in single-pulse GRBs or in the initial pulse of multi-pulse GRBs.Finally,we found a significant positive correlation between F and E_(p),with half of the samples exhibiting a positive correlation between F andα.We discussed the spectral evolution of different radiation models.The diversity of spectral evolution patterns indicates that there may be more than one radiation mechanism occurring in the GRB radiation process,including photo spheric radiation and synchrotron radiation.However,it may also involve only one radiation mechanism,but more complicated physical details need to be considered.展开更多
In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width a...In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width and energy of the precursor and main burst.We systematically search the light curve data observed by Swift/BAT and Fermi/GBM,and find 13 long bursts with well-structured precursors and main bursts.After fitting the precursor light curve of each different energy channel with the Norris function,we find that there is not only a power-law relationship between precursor width and energy,but also a power-law relationship between the ratio of the rising width to the decaying width and energy.By comparing the relationship between the precursors and the main burst pulses,we find that the distribution of the precursors and the relationship between the power-law indices are roughly the same as those of the main burst.In addition,it is found that the precursor width distribution as well as the upper limit of the pulse width ratio does not exceed 1 and both are asymmetric,which are also consistent with the main burst.These indicate that the precursor and the main burst are indistinguishable,and the precursor and the main burst may have the same physical origin.展开更多
Gamma-ray bursts(GRBs) are among the brightest objects in the Universe and, hence, can be observed up to a very high redshift. Properly calibrated empirical correlations between intensity and spectral correlations of ...Gamma-ray bursts(GRBs) are among the brightest objects in the Universe and, hence, can be observed up to a very high redshift. Properly calibrated empirical correlations between intensity and spectral correlations of GRBs can be used to estimate the cosmological parameters. However, the possibility of the evolution of GRBs with redshift is a long-standing puzzle. In this work, we used 162 long-duration GRBs to determine whether GRBs below and above a certain redshift have different properties. The GRBs are split into two groups, and we fit the Amati relation for each group separately. Our findings demonstrate that estimations of the Amati parameters for the two groups are substantially dissimilar. We perform simulations to investigate whether the selection effects could cause the difference. Our analysis shows that the differences may be either intrinsic or due to systematic errors in the data, and the selection effects are not their true origin. However, in-depth analysis with a new data set comprised of 119 long GRBs shows that intrinsic scatter may partly be responsible for such effects.展开更多
After launching a jet,outflows of magnetar were used to account for the achromatic plateau of afterglow and the early X-ray flux plateau known as“internal plateau”.The lack of detecting magnetic dipole emission toge...After launching a jet,outflows of magnetar were used to account for the achromatic plateau of afterglow and the early X-ray flux plateau known as“internal plateau”.The lack of detecting magnetic dipole emission together with the energy injection feature in a single observation poses confusion until the long gamma-ray burst(GRB)210610B is detected.GRB 210610B is presented with an optical bump following an early X-ray plateau during the afterglow phase.The plateau followed by a steep decline flux overlays in the steadily decaying X-ray flux with indexα_(X,1)~2.06,indicating an internal origin and that can be fitted by the spin-down luminosity law with the initial plateau luminosity log_(10)L_(X)~48.29 erg s~(-1)and the characteristic spin-down timescale T~2818 s.A subsequent bump begins at~4000 s in the R band with a rising indexα_(R,1)~-0.30 and peaks at~14125 s,after which a decay indexα_(R,2)~0.87 and finally transiting to a steep decay withα_(R,3)~1.77 achieve the closure relation of the external shock for the normal decay phase as well as the magnetar spin-down energy injection phase,provided that the average value of the photon indexΓ_γ=1.80 derived from the spectral energy distributions(SEDs)between the X-ray and optical afterglow.The closure relation also works for the late X-ray flux.Akin to the traditional picture of GRB,the outflow powers the early X-ray plateau by dissipating energy internally and collides with the leading decelerating blast burst as time goes on,which could interpret the exotic feature of GRB 210610B.We carry out a Markov Chain Monte Carlo simulation and obtain a set of best parameters:■.The artificial light curve can fit the afterglow data well.After that,we estimated the average Lorentz factor and the X-ray radiation efficiency of the later ejecta are 35%and 0.13%,respectively.展开更多
GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light cur...GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light curve with a decay index ofα=7.53 is steeper than the steepest possible decay from an external shock model.We propose that this X-ray afterglow can be driven by dipolar radiation from the magnetar spindown during its early stage,while the magnetar collapsed into the black hole before its spindown,resulting in a very steep decay of the late X-ray light curve.The optical data show that the light curve is still rising after 1.1 ks,suggesting a late onset.We show that GRB 200612A’s optical afterglow light curve is fitted with the forward shock model by Gaussian structured off-axis jet.This is a special case among GRBs,as it may be an ultralong gamma-ray burst powered by a magnetar in an off-axis observation scenario.展开更多
We employ an efficient method for identifying γ-ray sources across the entire sky,leveraging advanced algorithms from Fermipy,and cleverly utilizing the Galactic diffuse background emission model to partition the ent...We employ an efficient method for identifying γ-ray sources across the entire sky,leveraging advanced algorithms from Fermipy,and cleverly utilizing the Galactic diffuse background emission model to partition the entire sky into72 regions,thereby greatly enhancing the efficiency of discovering new sources throughout the sky through multithreaded parallel computing.After confirming the reliability of the new method,we applied it for the first time to analyze data from the Fermi Large Area Telescope(Fermi-LAT)encompassing approximately 15.41 yr of all-sky surveys.Through this analysis,we successfully identified 1379 new sources with significance levels exceeding 4σ,of which 497 sources exhibited higher significance levels exceeding 5σ.Subsequently,we performed a systematic analysis of the spatial extension,spectra,and light variation characteristics of these newly identified sources.We identified 21 extended sources and 23 sources exhibiting spectral curvature above 10 GeV.Additionally,we identified 44 variable sources above 1 GeV.展开更多
With great advance of ground-based extensive air shower arrays,such as LHAASO and HAWC,many very high energy(VHE)gamma-ray sources have been discovered and are being monitored regardless of the day and the night.Hence...With great advance of ground-based extensive air shower arrays,such as LHAASO and HAWC,many very high energy(VHE)gamma-ray sources have been discovered and are being monitored regardless of the day and the night.Hence,the Sun and Moon would have some impacts on the observation of gamma-ray sources,which have not been taken into account in previous analysis.In this paper,the influence of the Sun and Moon on the observation of very high energy gamma-ray sources when they are near the line of sight of the Sun or Moon is estimated.The tracks of all the known VHE sources are scanned and several VHE sources are found to be very close to the line of sight of the Sun or Moon during some period.The absorption of very high energy gamma rays by sunlight is estimated with detailed method and some useful conclusions are achieved.The main influence is the block of the Sun and Moon on gamma rays and the shadow on the cosmic ray background.The influence is investigated considering the detector angular resolution and some strategies on data analysis are proposed to avoid the underestimation of the gamma-ray emission.展开更多
POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polar...POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polarimeter that is sensitive to soft X-rays(2-10 keV),called low-energy polarization detector.We have developed a new soft X-ray polari-zation detector prototype based on gas microchannel plates(GMCPs)and pixel chips(Topmetal).The GMCPs have bulk resistance,which prevents charging-up effects and ensures gain stability during operation.The detector is composed of low outgassing materials and is gas-sealed using a laser welding technique,ensuring long-term stability.A modulation factor of 41.28%±0.64% is obtained for a 4.5 keV polarized X-ray beam.A residual modulation of 1.96%±0.58% at 5.9 keV is observed for the entire sensitive area.展开更多
Recently, a new radio millisecond pulsar(MSP) J1740-5340B, hosted in the globular cluster(GC) NGC 6397,was reported with a 5.78 ms spin period in an eclipsing binary system with a 1.97 days orbital period. Based on a ...Recently, a new radio millisecond pulsar(MSP) J1740-5340B, hosted in the globular cluster(GC) NGC 6397,was reported with a 5.78 ms spin period in an eclipsing binary system with a 1.97 days orbital period. Based on a modified radio ephemeris updated by tool tempo2, we analyze the ~15 yr γ-ray data obtained from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope and detect PSR J1740-5340B's γ-ray pulsation at a confidence level of ~4σ with a weighted H-test value of ~26. By performing a phase-resolved analysis, the γ-ray luminosity in on-pulse interval of PSR J1740-5340B is L_(γ)~ 3.8 × 10^(33) erg s^(-1) using NGC 6397's distance of 2.48 kpc. And γ-rays from the on-pulse part of PSR J1740-5340B contribute ~90% of the total observed γ-ray emissions from NGC 6397. No significant γ-ray pulsation of another MSP J1740-5340A in the GC is detected.Considering that the previous four cases of MSPs in GCs, more data in γ-ray, X-ray, and radio are encouraged to finally confirm the γ-ray emissions from MSP J1740-5340B, especially starving for a precise ephemeris.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.12173100,11973097 and 12022302)the Youth Innovation Promotion Association CAS(Nos.2021317 and Y2021087)+1 种基金the Scientific Instrument Developing Project of the CAS(No.20200077)the Strategic Priority Research Program on Space Science,Chinese Academy of Sciences(No.XDA 15320104).
文摘The Hard X-ray Imager(HXI)payload,a component of China’s Advanced Space-based Solar Observatory satellite,is designed to observe solar X-ray emissions in the 30-200 keV range,with the aim of investigating nonthermal physical processes during solar flares.Before launch,Geant4 simulations were employed to assess the onorbit background of the HXI instrument,evaluating its performance and potential to achieve its scientific objectives.This study addresses issues identified in previous simulations and conducts further analyses to examine the distribution of background counts across the 99 detectors.The results demonstrate alignment between simulations and observations at low and medium geomagnetic latitudes;however,challenges persist at high geomagnetic latitudes due to limitations in the current albedo photon model.This investigation provides insights into background sources from various particles,enhances understanding of space background characteristics,and offers guidance for background subtraction in imaging processes.
基金supported by the National Key R&D Program of China(grant No.2024YFA1611600)the SVOM project(a mission under the Strategic Priority Program on Space Science of the Chinese Academy of Sciences)+23 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0550401)the National Natural Science Foundation of China(NSFC,grant No.12494573)partly supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(grant No.2024D01D32)Tianshan Talent Training Program(grant No.2023TSYCLJ0053)Tianshan Innovation Team Program(grant No.2024D14015)supported by the Jiangsu Funding Program for Excellent Postdoctoral Talent(grant No.2024ZB110)the Postdoctoral Fellowship Program(grant No.GZC20241916)the General Fund(grant No.2024M763531)of the China Postdoctoral Science Foundationsupported by a Royal Society Dorothy Hodgkin Fellowship(grant Nos.DHF-R1-221175 and DHF-ERE-221005)support by a postdoctoral fellowship from the CNESsupported by the National Key R&D Program of China(grant No.2024YFA1611702)the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0550101)the support of the French Agence Nationale de la Recherche(ANR),under grant ANR-23-CE31-0011(project PEGaSUS)financial support from the GRAWITA Large Program Grant(PI P.D’Avanzo)financial support from the Italian Space Agency,contract ASI/INAF No.I/004/11/6support from the INAF project Premiale Supporto Arizona&Italiasupported by the National Natural Science Foundation of China(NSFC,grant No.12133003)supported by the National Natural Science Foundation of China(NSFC,grant No.12373042)the Bagui Scholars Program(No.GXR-6BG2424001)funded by the European Union(ERC,HEAVYMETAL,101071865,Views and opinions expressed are,however,those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Neither the European Union nor the granting authority can be held responsible for them)the Cosmic Dawn Center(DAWN)is funded by the Danish National Research Foundation under grant No.DNRF140supported by the National Natural Science Foundation of China(NSFC,grant Nos.12225305 and 12321003)supported by the National Natural Science Foundation of China(NSFC,grant No.12473049)supported by the General Fund(grant No.2024M763530)of the China Postdoctoral Science Foundation。
文摘Early multiwavelength observations offer crucial insights into the nature of the relativistic jets responsible for gamma-ray bursts and their interaction with the surrounding medium.We present data of GRB 240825A from 17 space-and ground-based telescopes/instruments,covering wavelengths from NIR/optical to X-ray and GeV,and spanning from the prompt emission to the afterglow phase triggered by Swift and Fermi.The early afterglow observations were carried out by SVOM/C-GFT,and spectroscopic observations of the afterglow by GTC,VLT,and TNG determined the redshift of the burst(z=0.659)later.A comprehensive analysis of the prompt emission spectrum observed by Swift-BAT and Fermi-GBM/LAT reveals a rare and significant high-energy cutoff at 76 MeV.Assuming this cutoff is due toγγabsorption allows us to place an upper limit on the initial Lorentz factor,Γ_(0)<245.The optical/NIR and GeV afterglow light curves can be described by the standard external shock model,with early-time emission dominated by a reverse shock(RS)and a subsequent transition to forward shock(FS)emission.Our afterglow modeling yields a consistent estimate of the initial Lorentz factor(Γ_(0)∼234).Furthermore,the RS-to-FS magnetic field ratio(R 302B)indicates that the RS region is significantly more magnetized than the FS region.An isotropic-equivalent kinetic energy of E_(k,iso)=5.25×10^(54) erg is derived,and the correspondingγ-ray radiation efficiency is estimated to beη_(γ)=3.1%.On the other hand,the standard afterglow model cannot reproduce the X-ray light curve of GRB 240825A,calling for improved models to characterize all multiwavelength data.
基金supported by NSFC grant No.12393852the Yunnan Fundamental Research Project(grant No.202501AS070068).
文摘Supernova remnants(SNRs)interacting with molecular clouds(MCs)are recognized as the sources of γ-rays and cosmic rays in the Galaxy.Based on the SNR-MC system,this study establishes a particle cumulative diffusion model to investigate the mechanism by which high-energy protons escaping from SNRs interact with dense MCs through proton–proton interactions to produce high-energyγ-rays.Using the W51 complex,a typical star-forming region,as a research sample,we analyze the production and propagation characteristics of γ-rays.By employing the Exponential Cutoff Power-Law model and the Markov Chain Monte Carlo method,we fit theγ-ray observational data of W51C,successfully constraining the key physical parameters.Additionally,we systematically search for 1LHAASO sources spatially coincident with SNR-MC systems to explore the potential origins of ultra-high-energy(UHE) γ-ray sources.The results indicate that the radiation characteristics of the UHE γ-ray sources are highly consistent with the SNR-MC systems,further supporting their candidacy as PeVatrons in the Galaxy.
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.12275279 and 12405124)the China Postdoctoral Science Foundation(No.2023M730423)Horizontal research project in natural sciences(No.H20230120)。
文摘The study of high-energy gamma-ray emission from gamma-ray bursts(GRBs)involves complex synchrotron radiation and synchrotron self-Compton(SSC)scattering mechanisms with multiple parameters exhibiting a wide distribution.Recent advancements in GRB research,particularly the observation of very high energy(VHE,>100 Ge V)radiation,have ushered in a new era of multiwavelength exploration,offering fresh perspectives and limitations for understanding GRB radiation mechanisms.This study aimed to leverage VHE observations to refine constraints on synchrotron+SSC radiation from electrons accelerated by forward shocks.By analyzing two external environments—the uniform interstellar medium and stratified stellar wind medium,we conducted spectral and variability fitting for five specific bursts(GRB 180720B,GRB 190114C,GRB 190829A,GRB 201216C,and GRB 221009A)to identify the optimal parameters characterizing these events.A comparative analysis of model parameter distributions with and without VHE radiation observations reveals that the magnetic energy equipartition factorεBis more concentrated with VHE emissions.This suggests that VHE emissions may offer greater constraints on this microphysical parameter.Additionally,we found that the energy budget between VHE and ke V–Me Vγ-ray emissions under the SSC radiation exhibits an almost linear relationship,which may serve as a tool to differentiate radiation mechanisms.We anticipate future statistical analyses of additional VHE bursts to validate our findings.
文摘We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via HEASOFT),we extracted light curves for each observational ID and for their aggregation.Countrate histograms were fitted using various statistical distributions;fit quality was assessed by chi-squared and the Bayesian Information Criterion.The first observational segment is best described by a Gaussian distribution(χ^(2)=68.4;BIC=7651.2),and the second by a Poisson distribution(χ^(2)=33.5;BIC=4413.3).When all segments are combined,the lognormal model provides the superior fit(χ^(2)=541.9;BIC=34365.5),indicating that the full data set’s count rates exhibit the skewness expected from a multiplicative process.These findings demonstrate that while individual time intervals conform to discrete or symmetric statistics,the collective emission profile across multiple observations is better captured by a lognormal distribution,consistent with complex,compounded variability in GRB afterglows.
基金supported by the National Natural Science Foundation of China(U1704134)。
文摘Very low frequency(VLF)signals are propagated between the ground-ionosphere.Multimode interference will cause the phase to show oscillatory changes with distance while propagating at night,leading to abnormalities in the received VLF signal.This study uses the VLF signal received in Qingdao City,Shandong Province,from the Russian Alpha navigation system to explore the multimode interference problem of VLF signal propagation.The characteristics of the effect of multimode interference phenomena on the phase are analyzed according to the variation of the phase of the VLF signal.However,the phase of VLF signals will also be affected by the X-ray and energetic particles that are released during the eruption of solar flares,therefore the two phenomena are studied in this work.It is concluded that the X-ray will not affect the phase of VLF signals at night,but the energetic particles will affect the phase change,and the influence of energetic particles should be excluded in the study of multimode interference phenomena.Using VLF signals for navigation positioning in degraded or unavailable GPS conditions is of great practical significance for VLF navigation systems as it can avoid the influence of multimode interference and improve positioning accuracy.
基金supported by the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences,grant XDB0550401supported by the National Natural Science Foundation of China(NSFC,grant No.12173009)+2 种基金by the Natural Science Foundation of Guangxi(2020GXNSFDA238018)by the Bagui Young Scholars Programsupported by the National Postdoctoral Program for Innovative Talents(grant No.GZB20230765)。
文摘In spite of the importance of studying the cosmic generation of heavy elements through the r-process,the detection of a kilonova resulting from the merger of a neutron star binary is still a challenging task.In this paper,we show that the Visible Telescope(VT)onboard the ongoing SVOM space mission is powerful for identifying kilonova candidates associated with short gamma-ray bursts up to a distance of 600 Mpc.A significant color variation,turning blue and then turning red,is revealed by calculating the light curves in both red and blue channels of VT by a linear combination of an afterglow and an associated kilonova.The maximum color variation is as high as~0.5-1 mag,which is far larger than the small photometry error of~0.2 mag of VT for a point source with a brightness of 23 mag.Up to a distance of 600 Mpc,~1-2 kilonova candidates per year are predicted to be identified by VT.
基金supported by the National Natural Science Foundation of China(grants 12022305,11973050,and 12203022)。
文摘Theγ-ray emitting compact symmetric objects(CSOs)PKS 1718-649,NGC 3894,and TXS 0128+554 are lobedominated in the radio emission.In order to investigate theirγ-ray radiation properties,we analyze the~14yr Fermi/LAT observation data of the three CSOs.They all show the low luminosity(1041-1043 erg s-1)and no significant variability in theγ-ray band.Theirγ-ray average spectra can be well fitted by a power-law function.These properties ofγ-rays are clearly different from theγ-ray emitting CSOs CTD 135 and PKS 1413+135,for which theγ-rays are produced by a restarted aligned jet.In the L_(γ)-Γ_(γ)plane,the three CSOs are also located at the region occupied by radio galaxies(RGs)while CTD 135 and PKS 1413+135 display a similar feature to blazars.Together with a similar radio emission property toγ-ray emitting RGs Cen A and Fornax A,we speculate that theγ-rays of the three CSOs stem from their extended mini-lobes.The broadband spectral energy distributions of the three CSOs can be well explained by the two-zone leptonic model,where theirγ-rays are produced by the inverse Compton process of the relativistic electrons in extended regions.By extrapolating the observed Fermi/LAT spectra to the very high energy band,we find that TXS 0128+554 among the three CSOs may be detected by the Cherenkov Telescope Array in the future.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0550400)the Key Research Program of Frontier Sciences(grant No.ZDBS-LY-7014)of Chinese Academy of Sciences+1 种基金the National Natural Science Foundation of China(NSFC,Grant Nos.12373053 and 12321003)the Natural Science Foundation of Jiangsu Province(grant No.BK20221562)。
文摘The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a comprehensive investigation on the first digit distributions of the duration,fluence,and energy flux of gamma-ray bursts (GRBs) for the first time.For a complete GRB sample detected by the Fermi satellite,we find that the first digits of the duration and fluence adhere to Benford’s law.However,the energy flux shows a significant departure from this law,which may be due to the fact that a considerable part of the energy flux measurements is restricted by lack of spectral information.Based on the conventional duration classification scheme,we also check if the durations and fluences of long and short GRBs (with duration T_(90)>2 s and T_(90)≤2 s,respectively) obey Benford’s law.We find that the fluences of both long and short GRBs still agree with the Benford distribution,but their durations do not follow Benford’s law.Our results hint that the long–short GRB classification scheme does not directly represent the intrinsic physical classification scheme.
基金performed under the auspices of the Science and Technology Foundation of Guizhou Province(grant No.Qian Ke He Ji Chu ZK[2021]027)Major Science and Technology Program of Xinjiang Uygur Autonomous Region through No.2022A03013-1+1 种基金the National Key Research and Development Program of China(No.2022YFC2205202)the National Natural Science Foundation of China grants 12288102,12041304 and 11847102。
文摘The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-resolved spectral analysis of 78 bright long GRB samples detected by Fermi/Gamma-ray Burst Monitor.A total of 1490 spectra were obtained and their properties were studied using a typical Band-shape model.First,the parameter distributions of the time-resolved spectrum are given as follows:the low-energy spectral indexα~-0.72,high-energy spectral indexβ~2.42,the peak energy E_(p)~221.69 keV,and the energy flux F~7.49×10^(-6)erg cm^(-2)s^(-1).More than 80%of the bursts exhibit the hardest low-energy spectral indexα_(max),exceeding the synchrotron limit(-2/3).Second,the evolution patterns of a and E_(p)were statistically analyzed.The results show that for multi-pulse GRBs the intensity-tracking pattern is more common than the hard-to-soft pattern in the evolution of both E_(p)andα.The hard-to-soft pattern is generally shown in single-pulse GRBs or in the initial pulse of multi-pulse GRBs.Finally,we found a significant positive correlation between F and E_(p),with half of the samples exhibiting a positive correlation between F andα.We discussed the spectral evolution of different radiation models.The diversity of spectral evolution patterns indicates that there may be more than one radiation mechanism occurring in the GRB radiation process,including photo spheric radiation and synchrotron radiation.However,it may also involve only one radiation mechanism,but more complicated physical details need to be considered.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12163007,11763009)。
文摘In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width and energy of the precursor and main burst.We systematically search the light curve data observed by Swift/BAT and Fermi/GBM,and find 13 long bursts with well-structured precursors and main bursts.After fitting the precursor light curve of each different energy channel with the Norris function,we find that there is not only a power-law relationship between precursor width and energy,but also a power-law relationship between the ratio of the rising width to the decaying width and energy.By comparing the relationship between the precursors and the main burst pulses,we find that the distribution of the precursors and the relationship between the power-law indices are roughly the same as those of the main burst.In addition,it is found that the precursor width distribution as well as the upper limit of the pulse width ratio does not exceed 1 and both are asymmetric,which are also consistent with the main burst.These indicate that the precursor and the main burst are indistinguishable,and the precursor and the main burst may have the same physical origin.
基金M.S.thanks DMRC for supportD.S.thanks the compeers of GD Goenka University for continuing assistance.
文摘Gamma-ray bursts(GRBs) are among the brightest objects in the Universe and, hence, can be observed up to a very high redshift. Properly calibrated empirical correlations between intensity and spectral correlations of GRBs can be used to estimate the cosmological parameters. However, the possibility of the evolution of GRBs with redshift is a long-standing puzzle. In this work, we used 162 long-duration GRBs to determine whether GRBs below and above a certain redshift have different properties. The GRBs are split into two groups, and we fit the Amati relation for each group separately. Our findings demonstrate that estimations of the Amati parameters for the two groups are substantially dissimilar. We perform simulations to investigate whether the selection effects could cause the difference. Our analysis shows that the differences may be either intrinsic or due to systematic errors in the data, and the selection effects are not their true origin. However, in-depth analysis with a new data set comprised of 119 long GRBs shows that intrinsic scatter may partly be responsible for such effects.
基金funded by the National Natural Science Foundation of China(Nos.12373042,U1938201,12273005 and 12133003)the Programme of Bagui Scholars Programme(WXG)support of the China Space Station Telescope(CSST)。
文摘After launching a jet,outflows of magnetar were used to account for the achromatic plateau of afterglow and the early X-ray flux plateau known as“internal plateau”.The lack of detecting magnetic dipole emission together with the energy injection feature in a single observation poses confusion until the long gamma-ray burst(GRB)210610B is detected.GRB 210610B is presented with an optical bump following an early X-ray plateau during the afterglow phase.The plateau followed by a steep decline flux overlays in the steadily decaying X-ray flux with indexα_(X,1)~2.06,indicating an internal origin and that can be fitted by the spin-down luminosity law with the initial plateau luminosity log_(10)L_(X)~48.29 erg s~(-1)and the characteristic spin-down timescale T~2818 s.A subsequent bump begins at~4000 s in the R band with a rising indexα_(R,1)~-0.30 and peaks at~14125 s,after which a decay indexα_(R,2)~0.87 and finally transiting to a steep decay withα_(R,3)~1.77 achieve the closure relation of the external shock for the normal decay phase as well as the magnetar spin-down energy injection phase,provided that the average value of the photon indexΓ_γ=1.80 derived from the spectral energy distributions(SEDs)between the X-ray and optical afterglow.The closure relation also works for the late X-ray flux.Akin to the traditional picture of GRB,the outflow powers the early X-ray plateau by dissipating energy internally and collides with the leading decelerating blast burst as time goes on,which could interpret the exotic feature of GRB 210610B.We carry out a Markov Chain Monte Carlo simulation and obtain a set of best parameters:■.The artificial light curve can fit the afterglow data well.After that,we estimated the average Lorentz factor and the X-ray radiation efficiency of the later ejecta are 35%and 0.13%,respectively.
基金supported by the National Natural Science Foundation of China(Nos.U1938201 and 12373042)。
文摘GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light curve with a decay index ofα=7.53 is steeper than the steepest possible decay from an external shock model.We propose that this X-ray afterglow can be driven by dipolar radiation from the magnetar spindown during its early stage,while the magnetar collapsed into the black hole before its spindown,resulting in a very steep decay of the late X-ray light curve.The optical data show that the light curve is still rising after 1.1 ks,suggesting a late onset.We show that GRB 200612A’s optical afterglow light curve is fitted with the forward shock model by Gaussian structured off-axis jet.This is a special case among GRBs,as it may be an ultralong gamma-ray burst powered by a magnetar in an off-axis observation scenario.
基金the Natural Science Foundation Youth Program of Sichuan Province(2023NSFSC1350)the Doctoral Initiation Fund of West China Normal University(22kE040)+2 种基金the Open Fund of Key Laboratory of Astroparticle Physics of Yunnan Province(2022Zibian3)the Sichuan Youth Science and Technology Innovation Research Team(21CXTD0038)the National Natural Science Foundation of China(NSFC,Grant No.12303048)。
文摘We employ an efficient method for identifying γ-ray sources across the entire sky,leveraging advanced algorithms from Fermipy,and cleverly utilizing the Galactic diffuse background emission model to partition the entire sky into72 regions,thereby greatly enhancing the efficiency of discovering new sources throughout the sky through multithreaded parallel computing.After confirming the reliability of the new method,we applied it for the first time to analyze data from the Fermi Large Area Telescope(Fermi-LAT)encompassing approximately 15.41 yr of all-sky surveys.Through this analysis,we successfully identified 1379 new sources with significance levels exceeding 4σ,of which 497 sources exhibited higher significance levels exceeding 5σ.Subsequently,we performed a systematic analysis of the spatial extension,spectra,and light variation characteristics of these newly identified sources.We identified 21 extended sources and 23 sources exhibiting spectral curvature above 10 GeV.Additionally,we identified 44 variable sources above 1 GeV.
基金supported by the National Natural Science Foundation of China under grant Nos.12393854,12022502 and 12263007by the High-level Talent Support program of Yunnan Province。
文摘With great advance of ground-based extensive air shower arrays,such as LHAASO and HAWC,many very high energy(VHE)gamma-ray sources have been discovered and are being monitored regardless of the day and the night.Hence,the Sun and Moon would have some impacts on the observation of gamma-ray sources,which have not been taken into account in previous analysis.In this paper,the influence of the Sun and Moon on the observation of very high energy gamma-ray sources when they are near the line of sight of the Sun or Moon is estimated.The tracks of all the known VHE sources are scanned and several VHE sources are found to be very close to the line of sight of the Sun or Moon during some period.The absorption of very high energy gamma rays by sunlight is estimated with detailed method and some useful conclusions are achieved.The main influence is the block of the Sun and Moon on gamma rays and the shadow on the cosmic ray background.The influence is investigated considering the detector angular resolution and some strategies on data analysis are proposed to avoid the underestimation of the gamma-ray emission.
基金supported by Department of Physics and GXUNAOC Center for Astrophysics and Space Sciences,Guangxi UniversityThe National Natural Science Foundation of China(Nos.12027803,U1731239,12133003,12175241,U1938201,U1732266)the Guangxi Science Foundation(Nos.2018GXNSFGA281007,2018JJA110048).
文摘POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polarimeter that is sensitive to soft X-rays(2-10 keV),called low-energy polarization detector.We have developed a new soft X-ray polari-zation detector prototype based on gas microchannel plates(GMCPs)and pixel chips(Topmetal).The GMCPs have bulk resistance,which prevents charging-up effects and ensures gain stability during operation.The detector is composed of low outgassing materials and is gas-sealed using a laser welding technique,ensuring long-term stability.A modulation factor of 41.28%±0.64% is obtained for a 4.5 keV polarized X-ray beam.A residual modulation of 1.96%±0.58% at 5.9 keV is observed for the entire sensitive area.
基金supported in part by the National Natural Science Foundation of China Nos. 12163006 and 12233006the Basic Research Program of Yunnan Province No. 202201AT070137+1 种基金the joint foundation of Department of Science and Technology of Yunnan Province and Yunnan University No. 202201BF070001-020support by the Xingdian Talent Support Plan-Youth Project。
文摘Recently, a new radio millisecond pulsar(MSP) J1740-5340B, hosted in the globular cluster(GC) NGC 6397,was reported with a 5.78 ms spin period in an eclipsing binary system with a 1.97 days orbital period. Based on a modified radio ephemeris updated by tool tempo2, we analyze the ~15 yr γ-ray data obtained from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope and detect PSR J1740-5340B's γ-ray pulsation at a confidence level of ~4σ with a weighted H-test value of ~26. By performing a phase-resolved analysis, the γ-ray luminosity in on-pulse interval of PSR J1740-5340B is L_(γ)~ 3.8 × 10^(33) erg s^(-1) using NGC 6397's distance of 2.48 kpc. And γ-rays from the on-pulse part of PSR J1740-5340B contribute ~90% of the total observed γ-ray emissions from NGC 6397. No significant γ-ray pulsation of another MSP J1740-5340A in the GC is detected.Considering that the previous four cases of MSPs in GCs, more data in γ-ray, X-ray, and radio are encouraged to finally confirm the γ-ray emissions from MSP J1740-5340B, especially starving for a precise ephemeris.