We derive the gravitational-wave(GW)strain upper limits from resolvable supermassive black-hole binaries using the data from the Five-hundred-meter Aperture Spherical radio Telescope,in the context of the Chinese Puls...We derive the gravitational-wave(GW)strain upper limits from resolvable supermassive black-hole binaries using the data from the Five-hundred-meter Aperture Spherical radio Telescope,in the context of the Chinese Pulsar Timing Array project.We focus on circular orbits in theμHz GW frequency band between 10^(−7)and 3×10^(−6)Hz.This frequency band is higher than the traditional pulsar timing array band and is less explored.We used the data of the millisecond pulsar PSR J1713+5307 observed between 2019 August and 2021 April.A dense observation campaign was carried out in 2020 September to allow for theμHz band coverage.Our sky-averaged continuous source upper limit at the 95%confidence level at 1μHz is 1.26×10^(−12),while the same limit in the direction of the pulsar is 4.77×10^(−13).展开更多
Fast Radio Bursts(FRBs) are enigmatic millisecond-duration radio transients of extra-galactic origin, whose underlying mechanisms and progenitors remain poorly understood. FRBs are broadly classified into two categori...Fast Radio Bursts(FRBs) are enigmatic millisecond-duration radio transients of extra-galactic origin, whose underlying mechanisms and progenitors remain poorly understood. FRBs are broadly classified into two categories: repeating FRBs, which emit multiple bursts over time, and one-off FRBs, which are detected as single events. A central question in FRB research is whether these two classes share a common origin. In this study, we present observations of FRB 20240114A, a repeating FRB that entered a hyperactive phase in 2024 January. We conducted a 318 hr monitoring campaign using the Kunming 40-Meter Radio Telescope(KM40M) in the S-band(2.187–2.311 GHz), during which we detected eight radio bursts. We analyzed their properties, including dispersion measure, bandwidth, pulse width, flux, fluence, and energy. Additionally, we searched for counterparts in overlapping data from the Five-hundred-meter Aperture Spherical Telescope(FAST) in the L-band(1.0–1.5 GHz). While no bursts were temporally aligned between the two telescopes, we identified one FAST burst that arrived approximately 6 ms after one of the KM40M bursts. The absence of FAST counterparts for the KM40M bursts suggests that individual bursts from FRB 20240114A are likely narrow-band, with fractional bandwidths less than 10%. By comparing the cumulative event rates from KM40M and FAST observations, we found that the two measurements are compatible, indicating a possible flattening of the event rate at higher energies. This feature aligns with observations of one-off FRBs, supporting the hypothesis that repeating and oneoff FRBs may share a common origin.展开更多
Twenty-five typical massive white dwarfs(WDs)are selected and the proton decay reaction catalyzed by magnetic monopoles(MMs)for these WDs is discussed.A velocity-dependent correction factor strongly affects the cross-...Twenty-five typical massive white dwarfs(WDs)are selected and the proton decay reaction catalyzed by magnetic monopoles(MMs)for these WDs is discussed.A velocity-dependent correction factor strongly affects the cross-section.We find that a strong suppression controls the monopole catalysis of nucleon decay by the correction factor.The maximum number of MMs is captured and the luminosity can be 2.235×10^(21)and 1.7859×10^(32)erg s^(-1)(e.g.,for the O+Ne core mass WD J055631.17+130639.78).The luminosities of most massive WDs agree well with the observations at relatively low temperatures(e.g.,T_(6)=0.1),but can be three and two orders of magnitude higher than those of the observations for model(Ⅰ)and(Ⅱ)at relatively high temperatures(e.g.,T_(6)=10),respectively.The luminosities of model(Ⅰ)are about one order of magnitude higher than those of model(Ⅱ).Since we consider the effect of the number of MMs captured on the mass–radius relation and the suppression of the proton decay by the correction factor,the study by model(Ⅱ)may be an improved estimation.展开更多
基金supported by the FAST Key projectsupported by the National SKA Program of China (2020SKA0120100)+4 种基金the National Natural Science Foundation of China (NSFC, Grant Nos. 12041303 and 12250410246)the CAS-MPG LEGACY projectfunding from the Max-Planck Partner Groupsupport from the XPLORER PRIZE and 20 yr long-term support from Dr. Guojun Qiaosupported by Major Science and Technology Program of Xinjiang Uygur Autonomous Region No. 2022A03013-4
文摘We derive the gravitational-wave(GW)strain upper limits from resolvable supermassive black-hole binaries using the data from the Five-hundred-meter Aperture Spherical radio Telescope,in the context of the Chinese Pulsar Timing Array project.We focus on circular orbits in theμHz GW frequency band between 10^(−7)and 3×10^(−6)Hz.This frequency band is higher than the traditional pulsar timing array band and is less explored.We used the data of the millisecond pulsar PSR J1713+5307 observed between 2019 August and 2021 April.A dense observation campaign was carried out in 2020 September to allow for theμHz band coverage.Our sky-averaged continuous source upper limit at the 95%confidence level at 1μHz is 1.26×10^(−12),while the same limit in the direction of the pulsar is 4.77×10^(−13).
基金supported by the National SKA Program of China (grant No. 2020SKA0120100)the Special Project of Foreign Science and Technology Cooperation, Yunnan Provincial Science and Technology Department (grant No. 202003AD150010)+4 种基金the National Key R&D Program of China (grant No. 2022YFC2205203)the National Natural Science Foundation of China (NSFC, grant Nos. 12073076, 12173087, 12041303, and 12063003)the CAS “Western Light Youth Project,” Yunnan Fundamental Research Projects (grant Nos. 202401AT070144 and 202505AO120021)funding from the Max-Planck Partner Groupsupport from the XPLORER PRIZE
文摘Fast Radio Bursts(FRBs) are enigmatic millisecond-duration radio transients of extra-galactic origin, whose underlying mechanisms and progenitors remain poorly understood. FRBs are broadly classified into two categories: repeating FRBs, which emit multiple bursts over time, and one-off FRBs, which are detected as single events. A central question in FRB research is whether these two classes share a common origin. In this study, we present observations of FRB 20240114A, a repeating FRB that entered a hyperactive phase in 2024 January. We conducted a 318 hr monitoring campaign using the Kunming 40-Meter Radio Telescope(KM40M) in the S-band(2.187–2.311 GHz), during which we detected eight radio bursts. We analyzed their properties, including dispersion measure, bandwidth, pulse width, flux, fluence, and energy. Additionally, we searched for counterparts in overlapping data from the Five-hundred-meter Aperture Spherical Telescope(FAST) in the L-band(1.0–1.5 GHz). While no bursts were temporally aligned between the two telescopes, we identified one FAST burst that arrived approximately 6 ms after one of the KM40M bursts. The absence of FAST counterparts for the KM40M bursts suggests that individual bursts from FRB 20240114A are likely narrow-band, with fractional bandwidths less than 10%. By comparing the cumulative event rates from KM40M and FAST observations, we found that the two measurements are compatible, indicating a possible flattening of the event rate at higher energies. This feature aligns with observations of one-off FRBs, supporting the hypothesis that repeating and oneoff FRBs may share a common origin.
基金supported in part by the National Natural Science Foundation of China(NSFC,grant Nos.11965010 and 11565020)the foundation for high-level talents program of Hainan basic and applied basic research program(natural science)under grant 2019RC239+3 种基金the Natural Science Foundation of Hainan Province under grants 118MS071 and 114012the Counterpart Foundation of Sanya under grants 2016PT43 and 2019PT76the Special Foundation of Science and Technology Cooperation for Advanced Academy and Regional of Sanya under grant 2016YD28the Scientific Research Starting Foundation for 515 Talented Project of Hainan Tropical Ocean University under grant RHDRC201701。
文摘Twenty-five typical massive white dwarfs(WDs)are selected and the proton decay reaction catalyzed by magnetic monopoles(MMs)for these WDs is discussed.A velocity-dependent correction factor strongly affects the cross-section.We find that a strong suppression controls the monopole catalysis of nucleon decay by the correction factor.The maximum number of MMs is captured and the luminosity can be 2.235×10^(21)and 1.7859×10^(32)erg s^(-1)(e.g.,for the O+Ne core mass WD J055631.17+130639.78).The luminosities of most massive WDs agree well with the observations at relatively low temperatures(e.g.,T_(6)=0.1),but can be three and two orders of magnitude higher than those of the observations for model(Ⅰ)and(Ⅱ)at relatively high temperatures(e.g.,T_(6)=10),respectively.The luminosities of model(Ⅰ)are about one order of magnitude higher than those of model(Ⅱ).Since we consider the effect of the number of MMs captured on the mass–radius relation and the suppression of the proton decay by the correction factor,the study by model(Ⅱ)may be an improved estimation.