Compared to high-resolution spectra,low-resolution spectra offer higher observational efficiency and broader sky coverage,making them especially valuable for large-scale stellar surveys.The Large Sky Area Multi-Object...Compared to high-resolution spectra,low-resolution spectra offer higher observational efficiency and broader sky coverage,making them especially valuable for large-scale stellar surveys.The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST)survey alone has collected tens of millions of low-resolution stellar spectra,providing an unprecedented opportunity for large-scale stellar parameter estimation.However,a substantial portion of these spectra suffer from low signal-to-noise ratio(low-SNR),which poses significant challenges for accurate parameter determination.Accurately extracting stellar atmospheric parameters from such data can significantly enhance the utility of spectral observations.However,these low-SNR spectra often introduce considerable uncertainty in parameter estimation.To address this issue,we propose a novel method based on the Cycle-Consistent Convolutional Neural Network(Cycle-CNN)for predicting key stellar atmospheric parameters,including effective temperature(T_(eff)),surface gravity(log g),and metallicity([Fe/H]).This method integrates the cycle-consistency learning mechanism of Cycle-GAN with the strong modeling capability of CNNs,thereby improving model robustness and reducing prediction uncertainty under low-SNR conditions.We train and evaluate the model on spectra from LAMOST DR9 across different SNR intervals(2-15).For spectra with SNR between 10 and 15,the model achieves prediction accuracies of 63.22 K for T_(eff),0.11 dex for log g,and 0.07 dex for[Fe/H].For the spectra with SNR between 5 and 10,the prediction accuracies are 89.45 K,0.17 dex,and 0.11 dex,respectively.Even under extreme conditions with SNR between 2 and 5 and limited data availability,the model maintains good performance,achieving accuracies of 145.36 K,0.29 dex,and 0.18 dex.Furthermore,we validate our predictions against reference parameters from high-resolution surveys,and the results demonstrate good consistency with other large-scale spectroscopic surveys.These findings indicate that the proposed Cycle-CNN method can provide stable and accurate predictions of atmospheric parameters even under low-quality spectral conditions,offering a reliable solution to improve the scientific utilization of low-quality spectra.展开更多
The development of spectroscopic survey telescopes like Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST),Apache Point Observatory Galactic Evolution Experiment and Sloan Digital Sky Survey has opened ...The development of spectroscopic survey telescopes like Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST),Apache Point Observatory Galactic Evolution Experiment and Sloan Digital Sky Survey has opened up unprecedented opportunities for stellar classification.Specific types of stars,such as early-type emission-line stars and those with stellar winds,can be distinguished by the profiles of their spectral lines.In this paper,we introduce a method based on derivative spectroscopy(DS)designed to detect signals within complex backgrounds and provide a preliminary estimation of curve profiles.This method exhibits a unique advantage in identifying weak signals and unusual spectral line profiles when compared to other popular line detection methods.We validated our approach using synthesis spectra,demonstrating that DS can detect emission signals three times fainter than Gaussian fitting.Furthermore,we applied our method to 579,680 co-added spectra from LAMOST Medium-Resolution Spectroscopic Survey,identifying 16,629 spectra with emission peaks around the Hαline from 10,963 stars.These spectra were classified into three distinct morphological groups,resulting in nine subclasses as follows.(1)Emission peak above the pseudo-continuum line(single peak,double peaks,emission peak situated within an absorption line,P Cygni profile,Inverse P Cygni profile);(2)Emission peak below the pseudo-continuum line(sharp emission peak,double absorption peaks,emission peak shifted to one side of the absorption line);(3)Emission peak between the pseudo-continuum line.展开更多
The Van Hoof effect is a phase shift existing between the radial velocity curves of hydrogen and metallic lines within the atmosphere of pulsating stars.In this article,we present a study of this phenomenon through th...The Van Hoof effect is a phase shift existing between the radial velocity curves of hydrogen and metallic lines within the atmosphere of pulsating stars.In this article,we present a study of this phenomenon through the spectra of the brightest pulsating star RR Lyr of RR Lyrae stars recorded for 22 yr.We based ourselves,on the one hand,on 1268 spectra(41 nights of observation)recorded between the years 1994 and 1997 at the Observatory of Haute Provence(OHP,France)previously observed by Chadid and Gillet,and on the other hand on 1569 spectra(46nights of observation)recorded at our Oukaimeden Observatory(Morocco)between 2015 and 2016.Through this study,we have detected information on atmospheric dynamics that had not previously been detected.Indeed,the Van Hoof effect which results in a clear correlation between the radial velocities of hydrogen and those of the metallic lines has been observed and analyzed at different Blazhko phases.A correlation between the radial velocities of different metallic lines located in the lower atmosphere has been observed as well.For the first time,we were able to show that the amplitude of the radial velocity curves deduced from the lines of hydrogen and that of FeⅡ(λ4923.921?)increases toward the minimum of the Blazhko cycle and decreases toward the maximum of the same Blazhko cycle.Furthermore,we found that the Van Hoof effect is also modulated by the Blazhko effect.Thus,toward the minimum of the Blazhko cycle the Van Hoof effect is more visible and at the maximum of the Blazhko cycle,this effect is minimal.We also observed the temporal evolution of the amplitudes of the radial velocities of the lower and upper atmosphere.When observed over a long time,we can interpret it as a function of the Blazhko phases.展开更多
This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this g...This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.展开更多
This paper presents an overview of the QUARKS survey,which stands for Querying Underlying mechanisms of massive star formation with ALMA-Resolved gas Kinematics and Structures."The QUARKS survey is observing139 m...This paper presents an overview of the QUARKS survey,which stands for Querying Underlying mechanisms of massive star formation with ALMA-Resolved gas Kinematics and Structures."The QUARKS survey is observing139 massive clumps covered by 156 pointings at Atacama Large Millimeter/submillimeter Array(ALMA)Band 6(λ~1.3 mm).In conjunction with data obtained from the ALMA-ATOMS survey at Band 3(λ~3 mm),QUARKS aims to carry out an unbiased statistical investigation of massive star formation process within protoclusters down to a scale of 1000 au.This overview paper describes the observations and data reduction of the QUARKS survey,and gives a first look at an exemplar source,the mini-starburst Sgr B2(M).The wide-b and width(7.5 GHz)and high-angular-resolution(~0."3)observations of the QUARKS survey allow for the resolution of much more compact cores than those could be done by the ATOMS survey,and to detect previously unrevealed fainter filamentary structures.The spectral windows cover transitions of species including CO,SO,N_(2)D^(+),SiO,H_(30)α,H_(2)CO,CH_(3)CN,and many other complex organic molecules,tracing gas components with different temperatures and spatial extents.QUARKS aims to deepen our understanding of several scientific topics of massive star formation,such as the mass transport within protoclusters by(hub-)filamentary structures,the existence of massive starless cores,the physical and chemical properties of dense cores within protoclusters,and the feedback from already formed high-mass young protostars.展开更多
基金supported by the Natural Science Foundation of Shandong Province(Nos.ZR2022MA076 and ZR2024MA063)the National Natural Science Foundation of China(NSFC,grant Nos.11873037,U1931209,11803016)+2 种基金the science research grants from the China Manned Space Project with No.CMSCSST-2021-B05 and CMS-CSST-2021-A08supported by the Doctoral Research Foundation of Shandong Technology and Business University(grant No.306519)the Young Scholars Program of Shandong University,Weihai(2016WHWLJH09)。
文摘Compared to high-resolution spectra,low-resolution spectra offer higher observational efficiency and broader sky coverage,making them especially valuable for large-scale stellar surveys.The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST)survey alone has collected tens of millions of low-resolution stellar spectra,providing an unprecedented opportunity for large-scale stellar parameter estimation.However,a substantial portion of these spectra suffer from low signal-to-noise ratio(low-SNR),which poses significant challenges for accurate parameter determination.Accurately extracting stellar atmospheric parameters from such data can significantly enhance the utility of spectral observations.However,these low-SNR spectra often introduce considerable uncertainty in parameter estimation.To address this issue,we propose a novel method based on the Cycle-Consistent Convolutional Neural Network(Cycle-CNN)for predicting key stellar atmospheric parameters,including effective temperature(T_(eff)),surface gravity(log g),and metallicity([Fe/H]).This method integrates the cycle-consistency learning mechanism of Cycle-GAN with the strong modeling capability of CNNs,thereby improving model robustness and reducing prediction uncertainty under low-SNR conditions.We train and evaluate the model on spectra from LAMOST DR9 across different SNR intervals(2-15).For spectra with SNR between 10 and 15,the model achieves prediction accuracies of 63.22 K for T_(eff),0.11 dex for log g,and 0.07 dex for[Fe/H].For the spectra with SNR between 5 and 10,the prediction accuracies are 89.45 K,0.17 dex,and 0.11 dex,respectively.Even under extreme conditions with SNR between 2 and 5 and limited data availability,the model maintains good performance,achieving accuracies of 145.36 K,0.29 dex,and 0.18 dex.Furthermore,we validate our predictions against reference parameters from high-resolution surveys,and the results demonstrate good consistency with other large-scale spectroscopic surveys.These findings indicate that the proposed Cycle-CNN method can provide stable and accurate predictions of atmospheric parameters even under low-quality spectral conditions,offering a reliable solution to improve the scientific utilization of low-quality spectra.
基金supported by Shanghai Jiao Tong University 2030 Initiative,Science and Technology Commission of Shanghai Municipality project (No.23JC1410200)Zhangjiang National Innovation Demonstration Zone project (No.ZJ2023-ZD-003)+7 种基金supported by the China-Chile Joint Research Fund under project CCJRF 2205, by FONDECYT grant 1201371the ANID BASAL project FB210003.YZC is supported by the National Natural Science Foundation of China (NSFC, Grant No.12303054)the Yunnan Fundamental Research Projects (Grant No.202401AU070063)the International Centre of Supernovae,Yunnan Key Laboratory (No.202302AN360001)supported by the NSFC (Grant No.12150009)supported by the NSFC through grants 12173029 and 12233013supported by the NSFC (Grant No.12120101003 and 12233008)supported by the NSFC (Grant No.12233003)
基金the support provided by the National Natural Science Foundation of China(NSFC,Grant Nos.12090040/3,12125303,12288102,and 11733008)the National Key Research and Development Program of China(grant No.2021YFA1600401/3)+3 种基金the China Manned Space Project(CMSCSST-2021-A10)the Yunnan Fundamental Research Projects(grant No.202101AV070001)the National Natural Science Foundation of China and the Chinese Academy of Sciences,under grant No.U1831125the Research Program of Frontier Sciences,CAS(grant No.QYZDY-SSW-SLH007)。
文摘The development of spectroscopic survey telescopes like Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST),Apache Point Observatory Galactic Evolution Experiment and Sloan Digital Sky Survey has opened up unprecedented opportunities for stellar classification.Specific types of stars,such as early-type emission-line stars and those with stellar winds,can be distinguished by the profiles of their spectral lines.In this paper,we introduce a method based on derivative spectroscopy(DS)designed to detect signals within complex backgrounds and provide a preliminary estimation of curve profiles.This method exhibits a unique advantage in identifying weak signals and unusual spectral line profiles when compared to other popular line detection methods.We validated our approach using synthesis spectra,demonstrating that DS can detect emission signals three times fainter than Gaussian fitting.Furthermore,we applied our method to 579,680 co-added spectra from LAMOST Medium-Resolution Spectroscopic Survey,identifying 16,629 spectra with emission peaks around the Hαline from 10,963 stars.These spectra were classified into three distinct morphological groups,resulting in nine subclasses as follows.(1)Emission peak above the pseudo-continuum line(single peak,double peaks,emission peak situated within an absorption line,P Cygni profile,Inverse P Cygni profile);(2)Emission peak below the pseudo-continuum line(sharp emission peak,double absorption peaks,emission peak shifted to one side of the absorption line);(3)Emission peak between the pseudo-continuum line.
文摘The Van Hoof effect is a phase shift existing between the radial velocity curves of hydrogen and metallic lines within the atmosphere of pulsating stars.In this article,we present a study of this phenomenon through the spectra of the brightest pulsating star RR Lyr of RR Lyrae stars recorded for 22 yr.We based ourselves,on the one hand,on 1268 spectra(41 nights of observation)recorded between the years 1994 and 1997 at the Observatory of Haute Provence(OHP,France)previously observed by Chadid and Gillet,and on the other hand on 1569 spectra(46nights of observation)recorded at our Oukaimeden Observatory(Morocco)between 2015 and 2016.Through this study,we have detected information on atmospheric dynamics that had not previously been detected.Indeed,the Van Hoof effect which results in a clear correlation between the radial velocities of hydrogen and those of the metallic lines has been observed and analyzed at different Blazhko phases.A correlation between the radial velocities of different metallic lines located in the lower atmosphere has been observed as well.For the first time,we were able to show that the amplitude of the radial velocity curves deduced from the lines of hydrogen and that of FeⅡ(λ4923.921?)increases toward the minimum of the Blazhko cycle and decreases toward the maximum of the same Blazhko cycle.Furthermore,we found that the Van Hoof effect is also modulated by the Blazhko effect.Thus,toward the minimum of the Blazhko cycle the Van Hoof effect is more visible and at the maximum of the Blazhko cycle,this effect is minimal.We also observed the temporal evolution of the amplitudes of the radial velocities of the lower and upper atmosphere.When observed over a long time,we can interpret it as a function of the Blazhko phases.
基金funded by the National Natural Science Foundation of China (Grant No. 11975145)
文摘This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.
基金supported by the National Key R&D Program of China(No.2022YFA1603100)the National Natural Science Foundation of China(NSFC)through grants Nos.12203086,12033005,12073061,12122307,and 12103045+12 种基金supported by CPSF No.2022M723278the international partnership program of Chinese Academy of Sciences through grant No.114231K YSB20200009Shanghai Pujiang Program 20PJ1415500the science research grants from the China Manned Space Project with no.CMS-CSST-2021-B06Yunnan Fundamental Research Project(grant No.202301AT070118)sponsored by Natural Science Foundation of Shanghai(No.23ZR1482100)support from the National Natural Science Foundation of China(NSFC)through grants Nos.12273090&12322305the Chinese Academy of Sciences(CAS)‘Light of West China’Program(No.xbzgzdsys-202212)support from the ANID BASAL project FB210003support from the Fondecyt Regular(project code 1220610)partially supported by a Grant-in-Aid for Scientific Research(KAKENHI Number JP22H01271 and JP23H01221)of JSPSsupported by JSPS KAKENHI(grant No.JP20H05645)sponsored(in part)by the Chinese Academy of Sciences(CAS),through a grant to the CAS South America Center for Astronomy(CASSACA)in Santiago,Chile。
文摘This paper presents an overview of the QUARKS survey,which stands for Querying Underlying mechanisms of massive star formation with ALMA-Resolved gas Kinematics and Structures."The QUARKS survey is observing139 massive clumps covered by 156 pointings at Atacama Large Millimeter/submillimeter Array(ALMA)Band 6(λ~1.3 mm).In conjunction with data obtained from the ALMA-ATOMS survey at Band 3(λ~3 mm),QUARKS aims to carry out an unbiased statistical investigation of massive star formation process within protoclusters down to a scale of 1000 au.This overview paper describes the observations and data reduction of the QUARKS survey,and gives a first look at an exemplar source,the mini-starburst Sgr B2(M).The wide-b and width(7.5 GHz)and high-angular-resolution(~0."3)observations of the QUARKS survey allow for the resolution of much more compact cores than those could be done by the ATOMS survey,and to detect previously unrevealed fainter filamentary structures.The spectral windows cover transitions of species including CO,SO,N_(2)D^(+),SiO,H_(30)α,H_(2)CO,CH_(3)CN,and many other complex organic molecules,tracing gas components with different temperatures and spatial extents.QUARKS aims to deepen our understanding of several scientific topics of massive star formation,such as the mass transport within protoclusters by(hub-)filamentary structures,the existence of massive starless cores,the physical and chemical properties of dense cores within protoclusters,and the feedback from already formed high-mass young protostars.