Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with ne...Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs).展开更多
Lithium-sulfur(Li-S)batteries are promising next-generation high-energy-density energy storage devices.However,the failure mechanism of 500 Wh kg^(-1)level Li-S pouch cells has not been well understood.Herein,quantita...Lithium-sulfur(Li-S)batteries are promising next-generation high-energy-density energy storage devices.However,the failure mechanism of 500 Wh kg^(-1)level Li-S pouch cells has not been well understood.Herein,quantitative and systematic failure analysis is conducted on 500 Wh kg^(-1)level Li-S pouch cells to understand the underlying failure mechanism.Focusing on electrolyte exhaustion as the primary cause of cell failure,quantitative analysis methods are established to determine electrolyte occupation by physical infiltration of the cathode,separator,and anode as well as chemical consumption by lithium metal.Insufficient physical infiltration of the cathode caused by irreversible cathode volume expansion is identified as the main cause of electrolyte exhaustion.In comparison,chemical consumption of electrolytes by lithium metal and insufficient anode infiltration have limited influence on cell operations.To address the insufficient cathode infiltration,macropore-rich sulfur cathodes are fabricated to suppress the irreversible volume expansion and prolong the cycling lifespan of Li-S pouch cells by 2.4 times.This work elucidates that the sulfur cathode dominates the cycling lifespan of high-energy-density Li-S batteries and highlights cathode structural design to mitigate irreversible volume expansion for cycling performance improvement.展开更多
Sodium-ion batteries have emerged as promising candidates for next-generation large-scale energy storage systems due to the abundance of sodium resources,low solvation energy,and cost-effectiveness.Among the available...Sodium-ion batteries have emerged as promising candidates for next-generation large-scale energy storage systems due to the abundance of sodium resources,low solvation energy,and cost-effectiveness.Among the available cathode materials,vanadium-based sodium phosphate cathodes are particularly notable for their high operating voltage,excellent thermal stability,and superior cycling performance.However,these materials face significant challenges,including sluggish reaction kinetics,the toxicity of vanadium,and poor electronic conductivity.To overcome these limitations and enhance electrochemical performance,various strategies have been explored.These include morphology regulation via diverse synthesis routes and electronic structure optimization through metal doping,which effectively improve the diffusion of Na+and electrons in vanadium-based phosphate cathodes.This review provides a comprehensive overview of the challenges associated with V-based polyanion cathodes and examines the role of morphology and electronic structure design in enhancing performance.Key vanadium-based phosphate frameworks,such as orthophosphates(Na_(3)V_(2)(PO_(4))_(3)),pyrophosphates(NaVP_(2)O_(7),Na_(2)(VO)P_(2)O_(7),Na_(7)V_(3)(P_(2)O_(7))_(4)),and mixed phosphates(Na_(7)V_(4)(P_(2)O_(7))_(4)PO_(4)),are discussed in detail,highlighting recent advances and insights into their structure-property relationships.The design of cathode material morphology offers an effective approach to optimizing material structures,compositions,porosity,and ion/electron diffusion pathways.Simultaneously,electronic structure tuning through element doping allows for the regulation of band structures,electron distribution,diffusion barriers,and the intrinsic conductivity of phosphate compounds.Addressing the challenges associated with vanadium-based sodium phosphate cathode materials,this study proposes feasible solutions and outlines future research directions toward advancement of high-performance vanadium-based polyanion cathodes.展开更多
To advance the application of layered oxide cathodes in fast-charging sodium-ion batteries,it is crucial to not only suppress irreversible phase transitions but also improve the rate capability of cathode materials an...To advance the application of layered oxide cathodes in fast-charging sodium-ion batteries,it is crucial to not only suppress irreversible phase transitions but also improve the rate capability of cathode materials and optimize Na^(+)diffusion kinetics to ensure high capacity output at various charge-discharge rates.In this research,the targeted F-substitution with a heavy ratio in oxygen anion layer optimizes the Na^(+)diffusion path and electronic conductivity of the material,thereby decreasing the Na^(+)diffusion barrier and imparting high-rate performance.At a 20 C rate,the cathode achieves a capacity of over 80 mAh g^(-1)with stable cycling performance.Additionally,the dual rivet effect between the transition metal layer and oxygen layer prevents significant phase transitions during charge/discharge within the 2-4.2 V range for the modified cathode.As a result,the F-substituted oxygen anion layer improved Na^(+)diffusion,electronic conductivity,and crystal plane structure stability,which led to the development of a highperformance,fast-charging sodium-ion battery(SIB),opening new avenues for commercial applications.展开更多
Magnesium-lithium hybrid batteries(MLHBs)have gained increasing attention due to their combined advantages of rapid ion insertion/extraction cathode and magnesium metal anode.Herein,Sn S_(2)-SPAN hybrid cathode with s...Magnesium-lithium hybrid batteries(MLHBs)have gained increasing attention due to their combined advantages of rapid ion insertion/extraction cathode and magnesium metal anode.Herein,Sn S_(2)-SPAN hybrid cathode with strong C-Sn bond and rich defects is ingeniously constructed to realize Mg^(2+)/Li^(+)co-intercalation.The physical and chemical double-confinement synergistic engineering of sulfurized polyacrylonitrile can suppress the agglomeration of Sn S_(2)nanoparticles and the volume expansion,simultaneously promote charge transfer and enhance structural stability.The introduced abundant sulfur vacancies provide more active sites for Mg^(2+)/Li^(+)co-intercalation.Meanwhile,the beneficial effects of rich sulfur defects and C-Sn bond on enhanced electrochemical properties are further evidenced by density-functional theory(DFT)calculations.Therefore,compared with pristine SnS_(2),SnS_(2)-SPAN cathode displays high specific capacity(218 m Ah g^(-1)at 0.5A g^(-1)over 700 cycles)and ultra-long cycling life(101 m Ah g^(-1)at 5 A g^(-1)up to 28,000 cycles).And a high energy density of 307 Wh kg^(-1)can be realized by the Sn S_(2)-SPAN//Mg pouch cell.Such elaborate and simple design supplies a reference for the exploitation of advanced cathode materials with excellent electrochemical properties for MLHBs.展开更多
Complex phase transitions occur in P2-type materials during charging and discharging.A high-entropy structure can effectively inhibit the structural phase transition of a P2-type layered material.In this study,a hight...Complex phase transitions occur in P2-type materials during charging and discharging.A high-entropy structure can effectively inhibit the structural phase transition of a P2-type layered material.In this study,a hightemperature solid-phase method is used to synthesize the P2-type high-entropy fluorine oxide(HEFO)Na_(0.7)Li_(0.08)Mn(Ⅳ)_(0.21)Mn(Ⅲ)_(0.43)Mg_(0.11)Ni_(0.11)W_(0.04)Nb_(0.02)O_(1.9)F_(0.1)[■-NLM(Ⅳ)0.21M(Ⅲ)0.43F(■=NMNWO)],with a superlattice structure and Na_(2)WO_(4)coating.Na_(2)WO_(4)can effectively inhibit the complex phase transition to improve the structural stability of the material and overcome the limitations of P2-type Na_(x)TMO_(2)(TM=transition metal)via additional charge compensation.Adjusting the Mn^(3+)/Mn^(4+)ratio to increase the average valence state of Mn and introducing F^(-)and Li^(+)to inhibit the Jahn-Teller effect suppress the complex phase transition during charging and discharging.The material exhibits a good multiplicative performance(discharge specific capacity of 88.4 mAh g^(-1)at a multiplicative rate of 10C)and capacity retention(99.22%after 200 cycles at 1C in the potential window of 1.5-4.3 V).The structural stabilities of HEFO are effectively demonstrated using electrochemical in situ X-ray diffraction and ex situ X-ray photoelectron spectroscopy.Theoretical calculations reveal that the high-entropy structure effectively improves the electronic structure and charge distribution of the layered oxide material.This study provides new concepts for use in developing novel energy batteries.展开更多
The development of appropriate cathode materials with stable structures and fast diffusion kinetics of zinc ions is crucial for aqueous zinc-ion batteries(AZIBs)but remains significantly challenging.Herein,the design ...The development of appropriate cathode materials with stable structures and fast diffusion kinetics of zinc ions is crucial for aqueous zinc-ion batteries(AZIBs)but remains significantly challenging.Herein,the design and synthesis of defect-rich and prismatic-shaped nanohybrids composed of vanadium oxynitride nanoparticles confined in the porous nitrogen-doped carbon framework(VN_(x)O_(y)@NC)are reported.Its unique structural advantages,including enriched defect sites that effectively enhance electrical conductivity,accelerate charge transfer kinetics,and improve structural stability.Additionally,the introduction of structural defects in VN_(x)O_(y)@NC increases the adsorption energy and reduces the hopping barrier of Zn ion,as evidenced by density functional theory(DFT)calculations.The H^(+)and Zn^(2+)co-insertion/extraction mechanism was systematically validated by ex-situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy tests.Consequently,the VN_(x)O_(y)@NC//Zn batteries exhibit an exceptional capacity of 570.9 mAh g^(-1)at 0.2 A g^(-1),a superior rate capability of 446.7 mAh g^(-1)at 20 A g^(-1),and long cycling life.Furthermore,the corresponding quasisolid-state battery delivers an ultra-high energy density of 271.9 Wh kg^(-1),demonstrating potential for practical applications.This work presents an effective structural and defect engineering strategy for designing advanced electrode materials with promising applications in AZIBs.展开更多
Enhancing the specific capacity of P2-type layered oxide cathodes via elevating the upper operation voltage would inevitably deteriorate electrochemical properties owing to the irreversible anionic redox reaction at h...Enhancing the specific capacity of P2-type layered oxide cathodes via elevating the upper operation voltage would inevitably deteriorate electrochemical properties owing to the irreversible anionic redox reaction at high voltage.In this work,the strategy of the electron donor was utilized to address this issue.Remarkably,the earth-abundant P2-layered cathode Na_(2/3)Al_(1/6)Fe_(1/6)Mn_(2/3)O_(2)with the presence of K_(2)S renders superior rate capability(187.4 and 79.5 mA h g^(-1)at 20 and 1000 mA g^(-1))and cycling stability(a capacity retention of 85.6% over 300 cycles at 1000 mA g^(-1))within the voltage region of 2-4.4 V Na^(+)/Na.Furthermore,excellent electrochemical performance is also demonstrated in the full cell.Detailed structural analysis of as-proposed composite cathode illustrates that even at 4.4 V irreversible phase transition can be avoided as well as a cell volume variation of only 0.88%,which are attributed to the enhanced performance compared with the control group.Meanwhile,further investigation of charge compensation reveals the crucial role of sulfur ions in actively control of reversible redox reaction of oxygen species in the lattice structure.This work inspires a new strategy to enhance the structural stability of layered sodium ion cathode materials at high voltages.展开更多
O3-type layered oxide cathodes for sodium-ion batteries are promising owing to high theoretical capacity and broad temperature adaptability,yet hindered by structural degradation and sluggish Na^(+)diffusion kinetics....O3-type layered oxide cathodes for sodium-ion batteries are promising owing to high theoretical capacity and broad temperature adaptability,yet hindered by structural degradation and sluggish Na^(+)diffusion kinetics.Herein,we present a sodium-deficient high-entropy layered oxide cathode(Na_(0.85)Ni_(0.3)Mn_(0.3)Fe_(0.1)Co_(0.15)Ti_(0.1)Cu_(0.05)B_(0.02)O_(2),denoted as Na0.85-HEO),combining sodium content optimization and high-entropy composition design.Incorporating six transition metals and light element boron creates a unique high-entropy configuration,effectively mitigating local lattice distortion and internal strain through chemical disorder effects,thereby enabling highly reversible phase transitions(O3-P3-O3)and smaller volume change(0.6A^(3))during the initial cycle.The sodium-deficient high-entropy design effectively increases the sodium interlayer spacing to 0.322 nm,facilitating the Na^(+)diffusion kinetics.Moreover,this high-entropy strategy enables the cathode to have a completely solid solution charge curve and significantly reduces the proportion of(O_(2))^(n-),thereby suppressing gas release during the cycling process.The resultant cathode demonstrates exceptional cyclability(80% capacity retention after 400 cycles at 100 mA g^(-1)in a full cell),and remarkable low-temperature performance(108.6 mAh g^(-1)at -40℃).This work guides the design of high-entropy electrode materials with tailored ionic transport channels for extreme-temperature energy storage applications.展开更多
Potassium-ion batteries(PIBs)were recognized for their natural abunda nce,high theoretical output voltage,and the availability of commercialized graphite anodes.However,the development of highperformance manganese-bas...Potassium-ion batteries(PIBs)were recognized for their natural abunda nce,high theoretical output voltage,and the availability of commercialized graphite anodes.However,the development of highperformance manganese-based layered oxide cathodes-a leading candidate for PIB systems-has been fundamentally constrained by irreversible phase transitions(PT)during the cycling process,manifesting as severe structural degradation and capacity fading.This review presents a transformative paradigm integrating machine learning(ML)with multiscale characterization to analyse the complex phase transition mechanisms in Mn-based cathodes.Through systematic ML-driven interrogation of structure-property relationships,we establish quantitative descriptors for phase stability and develop predictive models for transition dynamics.Furthermore,we highlight recent breakthroughs in cross-disciplinary approaches,enabling the rational design of PT-mitigated cathode architectures.By consolidating these insights into a unified knowledge framework,this work provides strategic guidelines for developing structurally robust Mn-based cathodes and outlines future research directions for next-generation PIB systems.展开更多
Compared with Zn^(2+),the current mainly reported charge carrier for zinc hybrid capacitors,small-hydrated-sized and light-weight NH_(4)^(+)is expected as a better one to mediate cathodic interfacial electrochemical b...Compared with Zn^(2+),the current mainly reported charge carrier for zinc hybrid capacitors,small-hydrated-sized and light-weight NH_(4)^(+)is expected as a better one to mediate cathodic interfacial electrochemical behaviors,yet has not been unraveled.Here we propose an NH_(4)^(+)-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn^(2+)/NH_(4)^(+)co-storage for boosting Zinc hybrid capacitors.Owing to the hierarchical cationic solvated structure in hybrid Zn(CF_(3)SO_(3))_(2)–NH_4CF_(3)SO_(3)electrolyte,high-reactive Zn^(2+)and small-hydrate-sized NH_4(H_(2)O))(4)^(+)induce cathodic interfacial Helmholtz plane reconfiguration,thus effectively enhancing the spatial charge density to activate 20%capacity enhancement.Furthermore,cathodic interfacial adsorbed hydrated NH_(4)^(+)ions afford high-kinetics and ultrastable C···H(NH_(4)^(+))charge storage process due to a much lower desolvation energy barrier compared with heavy and rigid Zn(H_(2)O)_6^(2+)(5.81 vs.14.90 eV).Consequently,physical uptake and multielectron redox of Zn^(2+)/NH_(4)^(+)in carbon cathode enable the zinc capacitor to deliver high capacity(240 mAh g^(-1)at 0.5 A g^(-1)),large-current tolerance(130 mAh g^(-1)at 50 A g^(-1))and ultralong lifespan(400,000cycles).This study gives new insights into the design of cathode–electrolyte interfaces toward advanced zinc-based energy storage.展开更多
采用优化后的Hummers方法成功合成了石墨烯的前驱体,并经由热还原技术转化为锂离子电池负极用石墨烯材料.当电流密度为50 mA/g时,该石墨烯负极展现出卓越的初始充电与放电容量,分别达到893.5 mAh g^(-1)与2114.6 mAh g^(-1),相较于传统...采用优化后的Hummers方法成功合成了石墨烯的前驱体,并经由热还原技术转化为锂离子电池负极用石墨烯材料.当电流密度为50 mA/g时,该石墨烯负极展现出卓越的初始充电与放电容量,分别达到893.5 mAh g^(-1)与2114.6 mAh g^(-1),相较于传统石墨负极,其充电容量提升显著,高达325%,而放电容量更是实现了高达619%的惊人增长.然而,尽管该石墨烯负极容量潜力巨大,但其初始充放电效率却相对较低,仅为42.25%,且在经历30次充放电循环后,容量保持率滑落至28.2%,揭示了直接应用时面临的挑战.展开更多
Aqueous zinc-ion batteries(AZIBs)have attracted widespread attention due to the advantages of high safety and environmental friendliness.Although V_(2)O_(3) is a promising cathode,the strong electrostatic interaction ...Aqueous zinc-ion batteries(AZIBs)have attracted widespread attention due to the advantages of high safety and environmental friendliness.Although V_(2)O_(3) is a promising cathode,the strong electrostatic interaction between Zn^(2+) and V_(2)O_(3) crystal,and the sluggish reaction kinetics still limit their application in AZIBs.Herein,the oxygen defects rich V_(2)O_(3) with conducive poly(3,4-ethylenedioxythiophene)(PEDOT)shell(V_(2)O_(3)-Od@PEDOT)was fabricated for AZIBs by combining the sulfur-assisted thermal reduction and in-situ polymerization method.The introduced oxygen vacancies of V_(2)O_(3)–Od@PEDOT weaken the electrostatic interaction between Zn^(2+) and the host material,improving the interfacial electron transport,while the PEDOT coating enhances the structural stability and conductivity of V_(2)O_(3),thus accelerating the reaction kinetics.Based on the advantages,V_(2)O_(3)–Od@PEDOT electrode delivers a reversible capacity of 495 mAh·g^(−1) at 0.1 A·g^(−1),good rate capability(189 mAh·g^(−1)at 8.0 A·g^(−1)),and an impressive cycling stability with 90.1%capacity retention over 1000 cycles at 8.0 A·g^(−1).The strategy may provide a path for exploiting the other materials for high performance AZIBs.展开更多
The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(...The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(3)) core/shell microspheres with oxygen vacancies are facilely fabricated by using a vanadium-based metal-organic framework(MIL-100(V)) as a sacrificial template.This unique structure can improve the conductivity of the VO_(x),accelerate electrolyte diffusion,and suppress structural collapse during circulation.Subsequently,H_(2)O molecules are introduced into the interlayer of VO_(x) through a highly efficient in-situ electrochemical activation process,facilitating the intercalation and diffusion of zinc ions.After the activation,an optimal sample exhibits a high specific capacity of 464.3 mA h g^(-1) at0.2 A g^(-1) and 395.2 mA h g^(-1) at 10 A g^(-1),indicating excellent rate performance.Moreover,the optimal sample maintains a capacity retention of about 89.3% after 2500 cycles at 10 A g^(-1).Density functional theory calculation demonstrates that the presence of oxygen vacancies and intercalated water molecules can significantly reduce the diffusion barrier for zinc ions.In addition,it is proved that the storage of zinc ions in the cathode is achieved by reversible intercalation/extraction during the charge and discharge process through various ex-situ analysis technologies.This work demonstrates that the p-VO_(x)@C has great potential for applications in aqueous ZIBs after electrochemical activation.展开更多
O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrolla...O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrollable phase transitions and intricate Na^(+)diffusion pathways during cycling,resulting in compromised structural stability and reduced capacity over cycles.This study introduces a special approach employing site-specific Ca/F co-substitution within the layered structure of O_(3)-NaNi_(0.5)Mn_(0.5)O_(2) to effectively address these issues.Herein,the strategically site-specific doping of Ca into Na sites and F into O sites not only expands the Na^(+)diffusion pathways but also orchestrates a mild phase transition by suppressing the Na^(+)/vacancy ordering and providing strong metal-oxygen bonding strength,respectively.The as-synthesized Na_(0.95)Ca_(0.05)Ni_(0.5)Mn_(0.5)O_(1.95)F_(0.05)(NNMO-CaF)exhibits a mild O3→O3+O'3→P3 phase transition with minimized interlayer distance variation,leading to enhanced structural integrity and stability over extended cycles.As a result,NNMO-CaF delivers a high specific capacity of 119.5 mA h g^(-1)at a current density of 120 mA g^(-1)with a capacity retention of 87.1%after 100 cycles.This study presents a promising strategy to mitigate the challenges posed by multiple phase transitions and augment Na^(+)diffusion kinetics,thus paving the way for high-performance layered cathode materials in sodium-ion batteries.展开更多
Aqueous zinc-based batteries are emerging as highly promising alternatives to commercially successful lithium-ion batteries,particularly for large-scale energy storage in power stations.Phosphate cathodes have garnere...Aqueous zinc-based batteries are emerging as highly promising alternatives to commercially successful lithium-ion batteries,particularly for large-scale energy storage in power stations.Phosphate cathodes have garnered significant research interest owing to their adjustable operation potential,electrochemical stability,high theoretical capacity,and environmental robustness.However,their application is impeded by various challenges,and research progress is hindered by unclear mechanisms.In this review,the various categories of phosphate materials as zinc-based battery cathodes are first summarized according to their structure and their corresponding electrochemical performance.Then,the current advances to reveal the Zn^(2+)storage mechanisms in phosphate cathodes by using advanced characterization techniques are discussed.Finally,some critical perspectives on the characterization techniques used in zinc-based batteries and the application potential of phosphates are provided.This review aims to guide researchers toward advanced characterization technologies that can address key challenges,thereby accelerating the practical application of phosphate cathodes in zinc-based batteries for large-scale energy storage.展开更多
基金supported by the research project within the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,Action 21)Kun Zheng acknowledges financial support from AGH University of Krakow(No.16.16.210.476).
文摘Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs).
基金supported by the National Key Research and Development Program of China(2023YFE0112902)the National Natural Science Foundation of China(22425901,22409116)+3 种基金the China Postdoctoral Science Foundation(GZB20240346)the Tianjin Natural Science Foundation(S23DYZD11034)the Seed Fund of Shanxi Research Institute for Clean Energy(SXKYJF015)the Shuimu Tsinghua Scholar Program of Tsinghua University。
文摘Lithium-sulfur(Li-S)batteries are promising next-generation high-energy-density energy storage devices.However,the failure mechanism of 500 Wh kg^(-1)level Li-S pouch cells has not been well understood.Herein,quantitative and systematic failure analysis is conducted on 500 Wh kg^(-1)level Li-S pouch cells to understand the underlying failure mechanism.Focusing on electrolyte exhaustion as the primary cause of cell failure,quantitative analysis methods are established to determine electrolyte occupation by physical infiltration of the cathode,separator,and anode as well as chemical consumption by lithium metal.Insufficient physical infiltration of the cathode caused by irreversible cathode volume expansion is identified as the main cause of electrolyte exhaustion.In comparison,chemical consumption of electrolytes by lithium metal and insufficient anode infiltration have limited influence on cell operations.To address the insufficient cathode infiltration,macropore-rich sulfur cathodes are fabricated to suppress the irreversible volume expansion and prolong the cycling lifespan of Li-S pouch cells by 2.4 times.This work elucidates that the sulfur cathode dominates the cycling lifespan of high-energy-density Li-S batteries and highlights cathode structural design to mitigate irreversible volume expansion for cycling performance improvement.
基金supported by the National Natural Science Foundation of China(NSFC)(22105059,22179078,22479115)the Beijing-Tianjin-Hebei Basic Research Cooperation Special Project(B2024204027)+5 种基金the Youth Top-notch Talent Foundation of Hebei Provincial Universities(BJK2022023)the Natural Science Foundation of Hebei Province(B2023204006)the talent training project of Hebei province(No.B20231004)the Innovative Research Team of High-level Local Universities in ShanghaiZhejiang Provincial Natural Science Foundation of China(LY24E020002)Wenzhou basic scientific research project(G20240022)。
文摘Sodium-ion batteries have emerged as promising candidates for next-generation large-scale energy storage systems due to the abundance of sodium resources,low solvation energy,and cost-effectiveness.Among the available cathode materials,vanadium-based sodium phosphate cathodes are particularly notable for their high operating voltage,excellent thermal stability,and superior cycling performance.However,these materials face significant challenges,including sluggish reaction kinetics,the toxicity of vanadium,and poor electronic conductivity.To overcome these limitations and enhance electrochemical performance,various strategies have been explored.These include morphology regulation via diverse synthesis routes and electronic structure optimization through metal doping,which effectively improve the diffusion of Na+and electrons in vanadium-based phosphate cathodes.This review provides a comprehensive overview of the challenges associated with V-based polyanion cathodes and examines the role of morphology and electronic structure design in enhancing performance.Key vanadium-based phosphate frameworks,such as orthophosphates(Na_(3)V_(2)(PO_(4))_(3)),pyrophosphates(NaVP_(2)O_(7),Na_(2)(VO)P_(2)O_(7),Na_(7)V_(3)(P_(2)O_(7))_(4)),and mixed phosphates(Na_(7)V_(4)(P_(2)O_(7))_(4)PO_(4)),are discussed in detail,highlighting recent advances and insights into their structure-property relationships.The design of cathode material morphology offers an effective approach to optimizing material structures,compositions,porosity,and ion/electron diffusion pathways.Simultaneously,electronic structure tuning through element doping allows for the regulation of band structures,electron distribution,diffusion barriers,and the intrinsic conductivity of phosphate compounds.Addressing the challenges associated with vanadium-based sodium phosphate cathode materials,this study proposes feasible solutions and outlines future research directions toward advancement of high-performance vanadium-based polyanion cathodes.
基金supported by the National Natural Science Foundation of China(Nos.22178221,22208221)the Shenzhen Science and Technology Program(Nos.JCYJ20220818095805012,JCYJ20230808105109019)+2 种基金the Natural Science Foundation of Guangdong Province(Nos.2024A1515011078,2024A1515011507)the Scientific Foundation for Youth Scholars of Shenzhen University(868-000001032522,827-0001004)the Instrumental Analysis Center of Shenzhen University for the assistance with the Electron Microscope technical support。
文摘To advance the application of layered oxide cathodes in fast-charging sodium-ion batteries,it is crucial to not only suppress irreversible phase transitions but also improve the rate capability of cathode materials and optimize Na^(+)diffusion kinetics to ensure high capacity output at various charge-discharge rates.In this research,the targeted F-substitution with a heavy ratio in oxygen anion layer optimizes the Na^(+)diffusion path and electronic conductivity of the material,thereby decreasing the Na^(+)diffusion barrier and imparting high-rate performance.At a 20 C rate,the cathode achieves a capacity of over 80 mAh g^(-1)with stable cycling performance.Additionally,the dual rivet effect between the transition metal layer and oxygen layer prevents significant phase transitions during charge/discharge within the 2-4.2 V range for the modified cathode.As a result,the F-substituted oxygen anion layer improved Na^(+)diffusion,electronic conductivity,and crystal plane structure stability,which led to the development of a highperformance,fast-charging sodium-ion battery(SIB),opening new avenues for commercial applications.
基金financially supported by the National Key R&D Program of China(No.2023YFB3809500)National Natural Science Foundation of China(Grant No.51931006,52272240 and U22A20118)+2 种基金the Fundamental Research Funds for the Central Universities of China(Xiamen University:No.20720220074)Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(HRTP-[2022]-22)the“Double-First Class”Foundation of Materials Intelligent Manufacturing Discipline of Xiamen University。
文摘Magnesium-lithium hybrid batteries(MLHBs)have gained increasing attention due to their combined advantages of rapid ion insertion/extraction cathode and magnesium metal anode.Herein,Sn S_(2)-SPAN hybrid cathode with strong C-Sn bond and rich defects is ingeniously constructed to realize Mg^(2+)/Li^(+)co-intercalation.The physical and chemical double-confinement synergistic engineering of sulfurized polyacrylonitrile can suppress the agglomeration of Sn S_(2)nanoparticles and the volume expansion,simultaneously promote charge transfer and enhance structural stability.The introduced abundant sulfur vacancies provide more active sites for Mg^(2+)/Li^(+)co-intercalation.Meanwhile,the beneficial effects of rich sulfur defects and C-Sn bond on enhanced electrochemical properties are further evidenced by density-functional theory(DFT)calculations.Therefore,compared with pristine SnS_(2),SnS_(2)-SPAN cathode displays high specific capacity(218 m Ah g^(-1)at 0.5A g^(-1)over 700 cycles)and ultra-long cycling life(101 m Ah g^(-1)at 5 A g^(-1)up to 28,000 cycles).And a high energy density of 307 Wh kg^(-1)can be realized by the Sn S_(2)-SPAN//Mg pouch cell.Such elaborate and simple design supplies a reference for the exploitation of advanced cathode materials with excellent electrochemical properties for MLHBs.
基金financially supported by the Guizhou Provincial Basic Research Program(Natural Science)(No.QKHJC-ZK[2023]YB051)the Natural Science Special Foundation of Guizhou University(No.GDTGH[2022]33)+2 种基金the Natural Science Research project of the Education Department of Guizhou Province(No.QJJ[2022]001)the National Natural Science Foundation of China(No.52161029)the Science and Technology Innovation Team of Education Agency in Guizhou Province(No.Qian Jiao Ji[2023]056)
文摘Complex phase transitions occur in P2-type materials during charging and discharging.A high-entropy structure can effectively inhibit the structural phase transition of a P2-type layered material.In this study,a hightemperature solid-phase method is used to synthesize the P2-type high-entropy fluorine oxide(HEFO)Na_(0.7)Li_(0.08)Mn(Ⅳ)_(0.21)Mn(Ⅲ)_(0.43)Mg_(0.11)Ni_(0.11)W_(0.04)Nb_(0.02)O_(1.9)F_(0.1)[■-NLM(Ⅳ)0.21M(Ⅲ)0.43F(■=NMNWO)],with a superlattice structure and Na_(2)WO_(4)coating.Na_(2)WO_(4)can effectively inhibit the complex phase transition to improve the structural stability of the material and overcome the limitations of P2-type Na_(x)TMO_(2)(TM=transition metal)via additional charge compensation.Adjusting the Mn^(3+)/Mn^(4+)ratio to increase the average valence state of Mn and introducing F^(-)and Li^(+)to inhibit the Jahn-Teller effect suppress the complex phase transition during charging and discharging.The material exhibits a good multiplicative performance(discharge specific capacity of 88.4 mAh g^(-1)at a multiplicative rate of 10C)and capacity retention(99.22%after 200 cycles at 1C in the potential window of 1.5-4.3 V).The structural stabilities of HEFO are effectively demonstrated using electrochemical in situ X-ray diffraction and ex situ X-ray photoelectron spectroscopy.Theoretical calculations reveal that the high-entropy structure effectively improves the electronic structure and charge distribution of the layered oxide material.This study provides new concepts for use in developing novel energy batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.22225902,U22A20436,and 22209185)the National key Research&Development Program of China(Nos.2022YFE0115900 and 2021YFA1501500)+1 种基金the Postdoctoral Fellowship Program of CPSF,China(No.GZB20230758)Fujian Key Laboratory of Green Extraction and High-value Utilization of New Energy Metals(No.2023-KFKT-2)
文摘The development of appropriate cathode materials with stable structures and fast diffusion kinetics of zinc ions is crucial for aqueous zinc-ion batteries(AZIBs)but remains significantly challenging.Herein,the design and synthesis of defect-rich and prismatic-shaped nanohybrids composed of vanadium oxynitride nanoparticles confined in the porous nitrogen-doped carbon framework(VN_(x)O_(y)@NC)are reported.Its unique structural advantages,including enriched defect sites that effectively enhance electrical conductivity,accelerate charge transfer kinetics,and improve structural stability.Additionally,the introduction of structural defects in VN_(x)O_(y)@NC increases the adsorption energy and reduces the hopping barrier of Zn ion,as evidenced by density functional theory(DFT)calculations.The H^(+)and Zn^(2+)co-insertion/extraction mechanism was systematically validated by ex-situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy tests.Consequently,the VN_(x)O_(y)@NC//Zn batteries exhibit an exceptional capacity of 570.9 mAh g^(-1)at 0.2 A g^(-1),a superior rate capability of 446.7 mAh g^(-1)at 20 A g^(-1),and long cycling life.Furthermore,the corresponding quasisolid-state battery delivers an ultra-high energy density of 271.9 Wh kg^(-1),demonstrating potential for practical applications.This work presents an effective structural and defect engineering strategy for designing advanced electrode materials with promising applications in AZIBs.
基金funding support from the Beijing Natural Science Foundation(2252055)National Natural Science Foundation of China(52072033)BIT Research and Innovation Promoting Project(2024YCXY040,GIIP2023-34)。
文摘Enhancing the specific capacity of P2-type layered oxide cathodes via elevating the upper operation voltage would inevitably deteriorate electrochemical properties owing to the irreversible anionic redox reaction at high voltage.In this work,the strategy of the electron donor was utilized to address this issue.Remarkably,the earth-abundant P2-layered cathode Na_(2/3)Al_(1/6)Fe_(1/6)Mn_(2/3)O_(2)with the presence of K_(2)S renders superior rate capability(187.4 and 79.5 mA h g^(-1)at 20 and 1000 mA g^(-1))and cycling stability(a capacity retention of 85.6% over 300 cycles at 1000 mA g^(-1))within the voltage region of 2-4.4 V Na^(+)/Na.Furthermore,excellent electrochemical performance is also demonstrated in the full cell.Detailed structural analysis of as-proposed composite cathode illustrates that even at 4.4 V irreversible phase transition can be avoided as well as a cell volume variation of only 0.88%,which are attributed to the enhanced performance compared with the control group.Meanwhile,further investigation of charge compensation reveals the crucial role of sulfur ions in actively control of reversible redox reaction of oxygen species in the lattice structure.This work inspires a new strategy to enhance the structural stability of layered sodium ion cathode materials at high voltages.
基金financially supported by the National Natural Science Foundation of China(No.52071073,52177208,and 52171202)the Hebei Province“333 talent project”(No.C20221012)+2 种基金the Science and Technology Project of Hebei Education Department(BJK2023005)the Fundamental Research Funds for the Central Universities(2024GFZD002)the Natural Science Foundation of Hebei Province(E2024501015)。
文摘O3-type layered oxide cathodes for sodium-ion batteries are promising owing to high theoretical capacity and broad temperature adaptability,yet hindered by structural degradation and sluggish Na^(+)diffusion kinetics.Herein,we present a sodium-deficient high-entropy layered oxide cathode(Na_(0.85)Ni_(0.3)Mn_(0.3)Fe_(0.1)Co_(0.15)Ti_(0.1)Cu_(0.05)B_(0.02)O_(2),denoted as Na0.85-HEO),combining sodium content optimization and high-entropy composition design.Incorporating six transition metals and light element boron creates a unique high-entropy configuration,effectively mitigating local lattice distortion and internal strain through chemical disorder effects,thereby enabling highly reversible phase transitions(O3-P3-O3)and smaller volume change(0.6A^(3))during the initial cycle.The sodium-deficient high-entropy design effectively increases the sodium interlayer spacing to 0.322 nm,facilitating the Na^(+)diffusion kinetics.Moreover,this high-entropy strategy enables the cathode to have a completely solid solution charge curve and significantly reduces the proportion of(O_(2))^(n-),thereby suppressing gas release during the cycling process.The resultant cathode demonstrates exceptional cyclability(80% capacity retention after 400 cycles at 100 mA g^(-1)in a full cell),and remarkable low-temperature performance(108.6 mAh g^(-1)at -40℃).This work guides the design of high-entropy electrode materials with tailored ionic transport channels for extreme-temperature energy storage applications.
基金financially supported by the National Natural Science Foundation of China(U20A20247)the National Key Research and Development Program of the Ministry of Science and Technology(2022YFA1402504)+1 种基金Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion(MATEC2023KF002)Guangdong Science and Technology Department(STKJ2021016)。
文摘Potassium-ion batteries(PIBs)were recognized for their natural abunda nce,high theoretical output voltage,and the availability of commercialized graphite anodes.However,the development of highperformance manganese-based layered oxide cathodes-a leading candidate for PIB systems-has been fundamentally constrained by irreversible phase transitions(PT)during the cycling process,manifesting as severe structural degradation and capacity fading.This review presents a transformative paradigm integrating machine learning(ML)with multiscale characterization to analyse the complex phase transition mechanisms in Mn-based cathodes.Through systematic ML-driven interrogation of structure-property relationships,we establish quantitative descriptors for phase stability and develop predictive models for transition dynamics.Furthermore,we highlight recent breakthroughs in cross-disciplinary approaches,enabling the rational design of PT-mitigated cathode architectures.By consolidating these insights into a unified knowledge framework,this work provides strategic guidelines for developing structurally robust Mn-based cathodes and outlines future research directions for next-generation PIB systems.
基金financially supported by the National Natural Science Foundation of China(Nos.22272118,22172111 and 22309134)the Science and Technology Commission of Shanghai Municipality,China(Nos.22ZR1464100,20ZR1460300 and 19DZ2271500)+3 种基金China Postdoctoral Science Foundation(2022M712402)Shanghai Rising-Star Program(23YF1449200)Zhejiang Provincial Science and Technology Project(2022C01182)the Fundamental Research Funds for the Central Universities(22120210529 and 2023-3-YB-07)。
文摘Compared with Zn^(2+),the current mainly reported charge carrier for zinc hybrid capacitors,small-hydrated-sized and light-weight NH_(4)^(+)is expected as a better one to mediate cathodic interfacial electrochemical behaviors,yet has not been unraveled.Here we propose an NH_(4)^(+)-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn^(2+)/NH_(4)^(+)co-storage for boosting Zinc hybrid capacitors.Owing to the hierarchical cationic solvated structure in hybrid Zn(CF_(3)SO_(3))_(2)–NH_4CF_(3)SO_(3)electrolyte,high-reactive Zn^(2+)and small-hydrate-sized NH_4(H_(2)O))(4)^(+)induce cathodic interfacial Helmholtz plane reconfiguration,thus effectively enhancing the spatial charge density to activate 20%capacity enhancement.Furthermore,cathodic interfacial adsorbed hydrated NH_(4)^(+)ions afford high-kinetics and ultrastable C···H(NH_(4)^(+))charge storage process due to a much lower desolvation energy barrier compared with heavy and rigid Zn(H_(2)O)_6^(2+)(5.81 vs.14.90 eV).Consequently,physical uptake and multielectron redox of Zn^(2+)/NH_(4)^(+)in carbon cathode enable the zinc capacitor to deliver high capacity(240 mAh g^(-1)at 0.5 A g^(-1)),large-current tolerance(130 mAh g^(-1)at 50 A g^(-1))and ultralong lifespan(400,000cycles).This study gives new insights into the design of cathode–electrolyte interfaces toward advanced zinc-based energy storage.
文摘采用优化后的Hummers方法成功合成了石墨烯的前驱体,并经由热还原技术转化为锂离子电池负极用石墨烯材料.当电流密度为50 mA/g时,该石墨烯负极展现出卓越的初始充电与放电容量,分别达到893.5 mAh g^(-1)与2114.6 mAh g^(-1),相较于传统石墨负极,其充电容量提升显著,高达325%,而放电容量更是实现了高达619%的惊人增长.然而,尽管该石墨烯负极容量潜力巨大,但其初始充放电效率却相对较低,仅为42.25%,且在经历30次充放电循环后,容量保持率滑落至28.2%,揭示了直接应用时面临的挑战.
基金This study was financially supported by the National Natural Science Foundation of China(No.22165028)the Nature Science Foundation of Gansu Province(No.20JR10RA108).
文摘Aqueous zinc-ion batteries(AZIBs)have attracted widespread attention due to the advantages of high safety and environmental friendliness.Although V_(2)O_(3) is a promising cathode,the strong electrostatic interaction between Zn^(2+) and V_(2)O_(3) crystal,and the sluggish reaction kinetics still limit their application in AZIBs.Herein,the oxygen defects rich V_(2)O_(3) with conducive poly(3,4-ethylenedioxythiophene)(PEDOT)shell(V_(2)O_(3)-Od@PEDOT)was fabricated for AZIBs by combining the sulfur-assisted thermal reduction and in-situ polymerization method.The introduced oxygen vacancies of V_(2)O_(3)–Od@PEDOT weaken the electrostatic interaction between Zn^(2+) and the host material,improving the interfacial electron transport,while the PEDOT coating enhances the structural stability and conductivity of V_(2)O_(3),thus accelerating the reaction kinetics.Based on the advantages,V_(2)O_(3)–Od@PEDOT electrode delivers a reversible capacity of 495 mAh·g^(−1) at 0.1 A·g^(−1),good rate capability(189 mAh·g^(−1)at 8.0 A·g^(−1)),and an impressive cycling stability with 90.1%capacity retention over 1000 cycles at 8.0 A·g^(−1).The strategy may provide a path for exploiting the other materials for high performance AZIBs.
基金supported by the National Natural Science Foundation of China(Nos.92163118,51972234)。
文摘The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(3)) core/shell microspheres with oxygen vacancies are facilely fabricated by using a vanadium-based metal-organic framework(MIL-100(V)) as a sacrificial template.This unique structure can improve the conductivity of the VO_(x),accelerate electrolyte diffusion,and suppress structural collapse during circulation.Subsequently,H_(2)O molecules are introduced into the interlayer of VO_(x) through a highly efficient in-situ electrochemical activation process,facilitating the intercalation and diffusion of zinc ions.After the activation,an optimal sample exhibits a high specific capacity of 464.3 mA h g^(-1) at0.2 A g^(-1) and 395.2 mA h g^(-1) at 10 A g^(-1),indicating excellent rate performance.Moreover,the optimal sample maintains a capacity retention of about 89.3% after 2500 cycles at 10 A g^(-1).Density functional theory calculation demonstrates that the presence of oxygen vacancies and intercalated water molecules can significantly reduce the diffusion barrier for zinc ions.In addition,it is proved that the storage of zinc ions in the cathode is achieved by reversible intercalation/extraction during the charge and discharge process through various ex-situ analysis technologies.This work demonstrates that the p-VO_(x)@C has great potential for applications in aqueous ZIBs after electrochemical activation.
基金supported by the Science and Technology Program of Suzhou(ST202304)the National Natural Science Foundation of China(12275189)+1 种基金the Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 project。
文摘O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrollable phase transitions and intricate Na^(+)diffusion pathways during cycling,resulting in compromised structural stability and reduced capacity over cycles.This study introduces a special approach employing site-specific Ca/F co-substitution within the layered structure of O_(3)-NaNi_(0.5)Mn_(0.5)O_(2) to effectively address these issues.Herein,the strategically site-specific doping of Ca into Na sites and F into O sites not only expands the Na^(+)diffusion pathways but also orchestrates a mild phase transition by suppressing the Na^(+)/vacancy ordering and providing strong metal-oxygen bonding strength,respectively.The as-synthesized Na_(0.95)Ca_(0.05)Ni_(0.5)Mn_(0.5)O_(1.95)F_(0.05)(NNMO-CaF)exhibits a mild O3→O3+O'3→P3 phase transition with minimized interlayer distance variation,leading to enhanced structural integrity and stability over extended cycles.As a result,NNMO-CaF delivers a high specific capacity of 119.5 mA h g^(-1)at a current density of 120 mA g^(-1)with a capacity retention of 87.1%after 100 cycles.This study presents a promising strategy to mitigate the challenges posed by multiple phase transitions and augment Na^(+)diffusion kinetics,thus paving the way for high-performance layered cathode materials in sodium-ion batteries.
基金National Natural Science Foundation of China(No.52270177)Natural Science Foundation of Shenyang(No.22-315-6-13)Fundamental Research Funds for the Central Universities(N2425035).
文摘Aqueous zinc-based batteries are emerging as highly promising alternatives to commercially successful lithium-ion batteries,particularly for large-scale energy storage in power stations.Phosphate cathodes have garnered significant research interest owing to their adjustable operation potential,electrochemical stability,high theoretical capacity,and environmental robustness.However,their application is impeded by various challenges,and research progress is hindered by unclear mechanisms.In this review,the various categories of phosphate materials as zinc-based battery cathodes are first summarized according to their structure and their corresponding electrochemical performance.Then,the current advances to reveal the Zn^(2+)storage mechanisms in phosphate cathodes by using advanced characterization techniques are discussed.Finally,some critical perspectives on the characterization techniques used in zinc-based batteries and the application potential of phosphates are provided.This review aims to guide researchers toward advanced characterization technologies that can address key challenges,thereby accelerating the practical application of phosphate cathodes in zinc-based batteries for large-scale energy storage.