As commercial electron transport materials for perovskite solar cells(PSCs),pre-synthesized tin oxide(SnO_(2))nanoparticles suffer from colloidal agglomeration and inhomogeneous size distribution in aqueous solutions....As commercial electron transport materials for perovskite solar cells(PSCs),pre-synthesized tin oxide(SnO_(2))nanoparticles suffer from colloidal agglomeration and inhomogeneous size distribution in aqueous solutions.The formed micro-size SnO_(2)aggregates on the planar indium tin oxide(ITO)substrate not only create energy disorder to impair interfacial charge transfer but also hampers the growth of perovskite crystals,deteriorating the photovoltaic performance and device lifespan of PSCs.Here,a multidentate ligand of 1,2-cyclohexanedinitrilotetraacetic acid(CDTA)is developed to modify the surface chemistry of ITO substrates,facilitating the formation of pinhole-free and uniform SnO_(2)electron transport layers for the crystallization of high-quality perovskite films.Moreover,the surface CDTA ligands lift the work function of ITO from 4.68 to 4.12 eV,enabling interfacial band alignment modification to improve the electron extraction from the ITO/SnO_(2)interface.As a result,the CDTA-modified PSCs exhibit a significantly enhanced PCE of 24.67% and much prolonged device lifespan,retaining 91.3% and 92.8% of the initial PCEs under 2,000 h dark storage and after 500 h under one-sun illumination in nitrogen,respectively.This work demonstrates a simple yet efficient interfacial engineering strategy for the design of efficient and durable PSCs.展开更多
CO_(2)reduction reaction(CO_(2)RR)electrolyzers based on gas diffusion electrode(GDE)enable the direct mass transfer of CO_(2)to the catalyst surface for participation in the reaction,thereby establishing an efficient...CO_(2)reduction reaction(CO_(2)RR)electrolyzers based on gas diffusion electrode(GDE)enable the direct mass transfer of CO_(2)to the catalyst surface for participation in the reaction,thereby establishing an efficient three-phase reaction interface that significantly enhances current density.However,current hydrophobic modification methods face difficulties in achieving precise and substantial control over wettability,and the hydrophobic modifiers tend to significantly impair the conductivity of the electrode and ion transport capabilities.This study employs Nafion ionomers to hydrophobically modify the threedimensional catalyst layer,revealing the bifunctionality of Nafion.The fluorinated backbone of Nafion ensures the hydrophobicity of the entire catalyst layer,while its sulfonic acid groups promote ion transport,without significantly affecting the conductivity of the electrode.Furthermore,by employing modifiers with distinct wettability characteristics,a highly efficient and large-scale manipulation of the hydrophilic/hydrophobic properties of the catalyst layer was successfully realized.The electrode,constructed with silver nanopowder as a representative catalyst and modified with the hydrophobic ionomer Nafion,exhibits a substantial enhancement in both catalytic activity and durability.The optimized electrode exhibited exceptional electrocatalytic performance in both flow cell and membrane electrode assembly(MEA)configurations.Notably,in the MEA,the electrode achieved a remarkable CO Faradaic efficiency(FE)of 93.3%at a total current density of 200 mA cm^(-2),while maintaining stable operation for over 62 h.展开更多
Aqueous Zinc-metal batteries(AZBs)hold great promise for energy storage applications,yet their practical deployment is hindered by challenges such as dendrite formation and parasitic side reactions at the Zn anode.Her...Aqueous Zinc-metal batteries(AZBs)hold great promise for energy storage applications,yet their practical deployment is hindered by challenges such as dendrite formation and parasitic side reactions at the Zn anode.Herein,we developed a three-dimensional Cu-coated flexible host via an electroless plating strategy on cotton cloth(Cu@CT).This design effectively homogenizes the local current density,spatially regulates Zn-ion flux,and accommodates substantial volume changes during cycling.Additionally,the zincophilic Cu coating facilitates Zn nucleation and deposition by forming Cu-Zn alloys,which reduce the Zn nucleation overpotential and promote uniform Zn plating.As a result,the Cu@CT based anode exhibits highly reversible Zn plating/stripping behavior with an average Coulombic efficiency of 99.58%over 800 cycles,accompanied by low polarization and dendrite-free behavior.Moreover,the Zn-I2 full cell demonstrates excellent rate capability,delivering a discharge capacity of 114 mA h g^(-1) at 10 A g^(-1),along with stable long-term cycling performance over 950 cycles.The electroless plating strategy may represent a promising pathway for advancing high-performance AZBs.展开更多
Antimony sulfide(Sb_(2)S_(3))is a promising material for photoelectrochemical(PEC)devices that generate green hydrogen from sunlight and water.In this study,we present a synthesis of high-performance Sb_(2)S_(3)photoa...Antimony sulfide(Sb_(2)S_(3))is a promising material for photoelectrochemical(PEC)devices that generate green hydrogen from sunlight and water.In this study,we present a synthesis of high-performance Sb_(2)S_(3)photoanodes via an interface-engineered hydrothermal growth followed by rapid thermal annealing(RTA).A TiO_(2)interfacial layer plays a crucial role in ensuring homogeneous precursor deposition,enhancing light absorption,and forming efficient heterojunctions with Sb_(2)S_(3),thereby significantly improving charge separation and transport.RTA further improves crystallinity and interfacial contact,resulting in dense and uniform Sb_(2)S_(3)films with enlarged grains and fewer defects.The optimized Sb_(2)S_(3)photoanode achieves a photocurrent density of 2.51 mA/cm^(2)at 1.23 V vs.the reversible hydrogen electrode(RHE),one of the highest reported for Sb_(2)S_(3)without additional catalysts or passivation layers.To overcome the limitations of oxygen evolution reaction(OER),we employ the iodide oxidation reaction(IOR)as an alternative,significantly lowering the overpotential and improving charge transfer kinetics.Consequently,it produces a record photocurrent density of 8.9 mA/cm^(2)at 0.54 V vs.RHE.This work highlights the synergy between TiO_(2)interfacial engineering,RTA-induced crystallization,and IOR-driven oxidation,offering a promising pathway for efficient and scalable PEC hydrogen production.展开更多
基金the financial support from the Fundamental Research Funds for the Central Universities and material characterizations from the Analytical&Testing Center of Northwestern Polytechnical Universitythe funding support from the Australian Research Council(ARC)Discovery Early Career Researcher Award。
文摘As commercial electron transport materials for perovskite solar cells(PSCs),pre-synthesized tin oxide(SnO_(2))nanoparticles suffer from colloidal agglomeration and inhomogeneous size distribution in aqueous solutions.The formed micro-size SnO_(2)aggregates on the planar indium tin oxide(ITO)substrate not only create energy disorder to impair interfacial charge transfer but also hampers the growth of perovskite crystals,deteriorating the photovoltaic performance and device lifespan of PSCs.Here,a multidentate ligand of 1,2-cyclohexanedinitrilotetraacetic acid(CDTA)is developed to modify the surface chemistry of ITO substrates,facilitating the formation of pinhole-free and uniform SnO_(2)electron transport layers for the crystallization of high-quality perovskite films.Moreover,the surface CDTA ligands lift the work function of ITO from 4.68 to 4.12 eV,enabling interfacial band alignment modification to improve the electron extraction from the ITO/SnO_(2)interface.As a result,the CDTA-modified PSCs exhibit a significantly enhanced PCE of 24.67% and much prolonged device lifespan,retaining 91.3% and 92.8% of the initial PCEs under 2,000 h dark storage and after 500 h under one-sun illumination in nitrogen,respectively.This work demonstrates a simple yet efficient interfacial engineering strategy for the design of efficient and durable PSCs.
基金National Key R&D Program of China(2023YFA1507902,2021YFA1500804)the National Natural Science Foundation of China(22121004,22038009,22250008)+2 种基金the Haihe Laboratory of Sustainable Chemical Transformations(CYZC202107)the Program of Introducing Talents of Discipline to Universities,China(No.BP0618007)the Xplorer Prize,China,for their financial support。
文摘CO_(2)reduction reaction(CO_(2)RR)electrolyzers based on gas diffusion electrode(GDE)enable the direct mass transfer of CO_(2)to the catalyst surface for participation in the reaction,thereby establishing an efficient three-phase reaction interface that significantly enhances current density.However,current hydrophobic modification methods face difficulties in achieving precise and substantial control over wettability,and the hydrophobic modifiers tend to significantly impair the conductivity of the electrode and ion transport capabilities.This study employs Nafion ionomers to hydrophobically modify the threedimensional catalyst layer,revealing the bifunctionality of Nafion.The fluorinated backbone of Nafion ensures the hydrophobicity of the entire catalyst layer,while its sulfonic acid groups promote ion transport,without significantly affecting the conductivity of the electrode.Furthermore,by employing modifiers with distinct wettability characteristics,a highly efficient and large-scale manipulation of the hydrophilic/hydrophobic properties of the catalyst layer was successfully realized.The electrode,constructed with silver nanopowder as a representative catalyst and modified with the hydrophobic ionomer Nafion,exhibits a substantial enhancement in both catalytic activity and durability.The optimized electrode exhibited exceptional electrocatalytic performance in both flow cell and membrane electrode assembly(MEA)configurations.Notably,in the MEA,the electrode achieved a remarkable CO Faradaic efficiency(FE)of 93.3%at a total current density of 200 mA cm^(-2),while maintaining stable operation for over 62 h.
基金supported by the National Natural Science Foundation of China(52301285,52173091,and 22208331)Wuhan Science and Technology Bureau(2024040801020319)Department of Science and Technology of Hubei Province(2021CSA076).
文摘Aqueous Zinc-metal batteries(AZBs)hold great promise for energy storage applications,yet their practical deployment is hindered by challenges such as dendrite formation and parasitic side reactions at the Zn anode.Herein,we developed a three-dimensional Cu-coated flexible host via an electroless plating strategy on cotton cloth(Cu@CT).This design effectively homogenizes the local current density,spatially regulates Zn-ion flux,and accommodates substantial volume changes during cycling.Additionally,the zincophilic Cu coating facilitates Zn nucleation and deposition by forming Cu-Zn alloys,which reduce the Zn nucleation overpotential and promote uniform Zn plating.As a result,the Cu@CT based anode exhibits highly reversible Zn plating/stripping behavior with an average Coulombic efficiency of 99.58%over 800 cycles,accompanied by low polarization and dendrite-free behavior.Moreover,the Zn-I2 full cell demonstrates excellent rate capability,delivering a discharge capacity of 114 mA h g^(-1) at 10 A g^(-1),along with stable long-term cycling performance over 950 cycles.The electroless plating strategy may represent a promising pathway for advancing high-performance AZBs.
基金supported by the National Research Foundation of Korea(NRF)grant fu nded by the Korean government(MSIT)(No.RS-2024-00335976)。
文摘Antimony sulfide(Sb_(2)S_(3))is a promising material for photoelectrochemical(PEC)devices that generate green hydrogen from sunlight and water.In this study,we present a synthesis of high-performance Sb_(2)S_(3)photoanodes via an interface-engineered hydrothermal growth followed by rapid thermal annealing(RTA).A TiO_(2)interfacial layer plays a crucial role in ensuring homogeneous precursor deposition,enhancing light absorption,and forming efficient heterojunctions with Sb_(2)S_(3),thereby significantly improving charge separation and transport.RTA further improves crystallinity and interfacial contact,resulting in dense and uniform Sb_(2)S_(3)films with enlarged grains and fewer defects.The optimized Sb_(2)S_(3)photoanode achieves a photocurrent density of 2.51 mA/cm^(2)at 1.23 V vs.the reversible hydrogen electrode(RHE),one of the highest reported for Sb_(2)S_(3)without additional catalysts or passivation layers.To overcome the limitations of oxygen evolution reaction(OER),we employ the iodide oxidation reaction(IOR)as an alternative,significantly lowering the overpotential and improving charge transfer kinetics.Consequently,it produces a record photocurrent density of 8.9 mA/cm^(2)at 0.54 V vs.RHE.This work highlights the synergy between TiO_(2)interfacial engineering,RTA-induced crystallization,and IOR-driven oxidation,offering a promising pathway for efficient and scalable PEC hydrogen production.