The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplore...The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.展开更多
H 3PW 12O 40/SiO 2(PW/SiO 2) was prepar ed by the sol-gel method and trimethylolpropane tri-heptanoate(TMH ) was synthes ized by trimethylolpropane(TMP) and heptylic acid(HA) in the presence of H 3PW 12O 40/SiO 2.The ...H 3PW 12O 40/SiO 2(PW/SiO 2) was prepar ed by the sol-gel method and trimethylolpropane tri-heptanoate(TMH ) was synthes ized by trimethylolpropane(TMP) and heptylic acid(HA) in the presence of H 3PW 12O 40/SiO 2.The results showed that the catalyst with 50%(mass)PW had good activity and stability.The optimal esterification conditions were as f ollows:n TMP∶n HA=1∶4,2%(mass)PW/SiO 2,reaction temperature 120—200 ℃ and 3 h.The structure of TMH was characterized by GC,IR, 1HNMR spectra and the rate of esterification was up to 95%.展开更多
常温下,乙醇作溶剂,无配体参与,以1-苯基-3-甲基-吡唑啉酮-5、芳香醛和芳香胺为原料,在CuMCM-41作催化剂下,三组分"一锅法"实现了C-C键和C-N键的同时合成,共合成了15种新的杂环多苯基β-氨基酮类化合物.探讨了溶剂和催化剂对...常温下,乙醇作溶剂,无配体参与,以1-苯基-3-甲基-吡唑啉酮-5、芳香醛和芳香胺为原料,在CuMCM-41作催化剂下,三组分"一锅法"实现了C-C键和C-N键的同时合成,共合成了15种新的杂环多苯基β-氨基酮类化合物.探讨了溶剂和催化剂对反应的影响,产物结构通过IR、~1 H NMR和元素分析确定.实验结果表明,当原料摩尔比为2.1∶2.0∶2.0,乙醇用量为4~5mL,0.2mmol的Cu-MCM-41分子筛作催化剂时,产率可达76%~89%.该方法具有操作简单、无需碱性介质和配体参与、溶剂选择要求低、条件温和、产率高、选择性高等特点.展开更多
基金supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L574)the Guizhou Provincial Science and Technology Foundation([2024]ZK General 425 and 438)+1 种基金the National Natural Science Foundation of China(22309033)the Academic Young Talent Foundation of Guizhou Normal University([2022]B05 and B06)。
文摘The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.
文摘H 3PW 12O 40/SiO 2(PW/SiO 2) was prepar ed by the sol-gel method and trimethylolpropane tri-heptanoate(TMH ) was synthes ized by trimethylolpropane(TMP) and heptylic acid(HA) in the presence of H 3PW 12O 40/SiO 2.The results showed that the catalyst with 50%(mass)PW had good activity and stability.The optimal esterification conditions were as f ollows:n TMP∶n HA=1∶4,2%(mass)PW/SiO 2,reaction temperature 120—200 ℃ and 3 h.The structure of TMH was characterized by GC,IR, 1HNMR spectra and the rate of esterification was up to 95%.
文摘常温下,乙醇作溶剂,无配体参与,以1-苯基-3-甲基-吡唑啉酮-5、芳香醛和芳香胺为原料,在CuMCM-41作催化剂下,三组分"一锅法"实现了C-C键和C-N键的同时合成,共合成了15种新的杂环多苯基β-氨基酮类化合物.探讨了溶剂和催化剂对反应的影响,产物结构通过IR、~1 H NMR和元素分析确定.实验结果表明,当原料摩尔比为2.1∶2.0∶2.0,乙醇用量为4~5mL,0.2mmol的Cu-MCM-41分子筛作催化剂时,产率可达76%~89%.该方法具有操作简单、无需碱性介质和配体参与、溶剂选择要求低、条件温和、产率高、选择性高等特点.