The solution processibility of perovskites provides a costeffective and high-throughput route for fabricating state-of-the-art solar cells.However,the fast kinetics of precursor-to-perovskite transformation is suscept...The solution processibility of perovskites provides a costeffective and high-throughput route for fabricating state-of-the-art solar cells.However,the fast kinetics of precursor-to-perovskite transformation is susceptible to processing conditions,resulting in an uncontrollable variance in device performance.Here,we demonstrate a supramolecule confined approach to reproducibly fabricate perovskite films with an ultrasmooth,electronically homogeneous surface.The assembly of a calixarene capping layer on precursor surface can induce host-vip interactions with solvent molecules to tailor the desolvation kinetics,and initiate the perovskite crystallization from the sharp molecule-precursor interface.These combined effects significantly reduced the spatial variance and extended the processing window of perovskite films.As a result,the standard efficiency deviations of device-to-device and batch-to-batch devices were reduced from 0.64-0.26%to 0.67-0.23%,respectively.In addition,the perovskite films with ultrasmooth top surfaces exhibited photoluminescence quantum yield>10%and surface recombination velocities<100 cm s^(-1)for both interfaces that yielded p-i-n structured solar cells with power conversion efficiency over 25%.展开更多
基金financially supported by the National Natural Science Foundation of China(22379044,22472053)the Science and Technology Commission of Shanghai Municipality(23520710700)+6 种基金the Key Program of the National Natural Science Foundation of China(22239001)the Shanghai Pilot Program for Basic Research(22TQ1400100-5)the ShanghaiMunicipal Natural Science Foundation(25ZR1401081)the Fundamental Research Funds for the Central Universities(JKD01251505,JKVD1251041)the Postdoctoral Fellowship Program of CPSF(GZC20250071)the Shanghai Engineering Research Center of Hierarchical Nanomaterials(18DZ2252400)the Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission)。
文摘The solution processibility of perovskites provides a costeffective and high-throughput route for fabricating state-of-the-art solar cells.However,the fast kinetics of precursor-to-perovskite transformation is susceptible to processing conditions,resulting in an uncontrollable variance in device performance.Here,we demonstrate a supramolecule confined approach to reproducibly fabricate perovskite films with an ultrasmooth,electronically homogeneous surface.The assembly of a calixarene capping layer on precursor surface can induce host-vip interactions with solvent molecules to tailor the desolvation kinetics,and initiate the perovskite crystallization from the sharp molecule-precursor interface.These combined effects significantly reduced the spatial variance and extended the processing window of perovskite films.As a result,the standard efficiency deviations of device-to-device and batch-to-batch devices were reduced from 0.64-0.26%to 0.67-0.23%,respectively.In addition,the perovskite films with ultrasmooth top surfaces exhibited photoluminescence quantum yield>10%and surface recombination velocities<100 cm s^(-1)for both interfaces that yielded p-i-n structured solar cells with power conversion efficiency over 25%.
文摘据陕西师范大学网站消息,日前,陕西师范大学化学化工学院、应用表面与胶体化学教育部重点实验室杨鹏教授团队在国际权威期刊《美国国家科学院院刊》(PNAS)上发表了题为“蛋白质活性/可控超分子聚合”(Living/controlled supramolecular protein po-lymerization)的研究论文。该校为第一署名单位,任浩副研究员和硕士研究生张千慧、王凯为共同第一作者,任浩副研究员和杨鹏教授为共同通讯作者。