The amide moiety plays an important role as a powerful bioactive backbone,and as the synthetic chemistry community moves toward more sp^(3)-rich scaffolds,alkyl halides have become the feedstock of choice for obtainin...The amide moiety plays an important role as a powerful bioactive backbone,and as the synthetic chemistry community moves toward more sp^(3)-rich scaffolds,alkyl halides have become the feedstock of choice for obtaining carbonylation products.With the development of photoredox catalysis,several aminocarbonylation systems for alkyl halides were developed which usually require transition metal catalysis.Considering the demands for green sustainable chemical synthesis,here we report a metal-free,exogenous catalyst-free aminocarbonylation reaction of alkyl iodides under atmospheric pressure of carbon monoxide.Through a combination of EDA and XAT strategies,the reaction occurs efficiently under only light irradiation at room temperature.展开更多
基金supported by National Key R&D Program of China(No.2023YFA1507500)the International Partnership Program of Chinese Academy of Sciences(No.028GJHZ2023045FN)。
文摘The amide moiety plays an important role as a powerful bioactive backbone,and as the synthetic chemistry community moves toward more sp^(3)-rich scaffolds,alkyl halides have become the feedstock of choice for obtaining carbonylation products.With the development of photoredox catalysis,several aminocarbonylation systems for alkyl halides were developed which usually require transition metal catalysis.Considering the demands for green sustainable chemical synthesis,here we report a metal-free,exogenous catalyst-free aminocarbonylation reaction of alkyl iodides under atmospheric pressure of carbon monoxide.Through a combination of EDA and XAT strategies,the reaction occurs efficiently under only light irradiation at room temperature.