Enones are widely explored in synthetic chemistry as fundamental building blocks for a wide range of reactions and exhibit intriguing biological activities that are pivotal for drug discovery.The development of synthe...Enones are widely explored in synthetic chemistry as fundamental building blocks for a wide range of reactions and exhibit intriguing biological activities that are pivotal for drug discovery.The development of synthetic strategies for highly efficient preparation of enones thereby receives intense attention,in particular through the transition metal-catalyzed coupling reactions.Here,we describe a carbene-catalyzed cross dehydrogenative coupling(CDC)reaction that enables effective assembly of simple aldehydes and alkenes to afford a diverse set of enone derivatives.Mechanistically,the in situ generated aryl radical is pivotal to“activate”the alkene by forming an allyl radical through intermolecular hydrogen atom transfer(HAT)pathway and thus forging the carbon-carbon bond formation with aldehyde as the acyl synthon.Notably,our method represents the first example on the enone synthesis through coupling of“non-functionalized”aldehydes and alkenes as coupling partners,and offers a distinct organocatalytic pathway to the transition metal-catalyzed coupling transformations.展开更多
基金funding supports from the National Natural Science Foundation of China(Nos.21732002,22061007,22071036,and 22207022)Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules,National Natural Science Fund for Excellent Young Scientists Fund Program(Overseas),the starting grant of Guizhou University[No.(2022)47)]+10 种基金Department of Education,Guizhou Province[Qianjiaohe KY No.(2020)004]The 10 Talent Plan(Shicengci)of Guizhou Province(No.[2016]5649)Science and Technology Department of Guizhou Province(Nos.[Qiankehe-jichu-ZK[2022]zhongdian024],[2018]2802,[2019]1020,QKHJC-ZK[2022]-455)Department of Education of Guizhou Province(No.QJJ(2022)205)Program of Introducing Talents of Discipline to Universities of China(111 Program,No.D20023)at Guizhou UniversitySingapore National Research Foundation under its NRF Investigatorship(No.NRF-NRFI2016–06)Competitive Research Program(No.NRF-CRP22–2019–0002)Ministry of Education,Singapore,under its MOE Ac RF Tier 1 Award(Nos.RG7/20,RG70/21)MOE AcRF Tier 2(No.MOE2019-T2–2–117)MOE AcRF Tier 3 Award(No.MOE2018-T3–1–003)a Chair Professorship Grant,and Nanyang Technological University。
文摘Enones are widely explored in synthetic chemistry as fundamental building blocks for a wide range of reactions and exhibit intriguing biological activities that are pivotal for drug discovery.The development of synthetic strategies for highly efficient preparation of enones thereby receives intense attention,in particular through the transition metal-catalyzed coupling reactions.Here,we describe a carbene-catalyzed cross dehydrogenative coupling(CDC)reaction that enables effective assembly of simple aldehydes and alkenes to afford a diverse set of enone derivatives.Mechanistically,the in situ generated aryl radical is pivotal to“activate”the alkene by forming an allyl radical through intermolecular hydrogen atom transfer(HAT)pathway and thus forging the carbon-carbon bond formation with aldehyde as the acyl synthon.Notably,our method represents the first example on the enone synthesis through coupling of“non-functionalized”aldehydes and alkenes as coupling partners,and offers a distinct organocatalytic pathway to the transition metal-catalyzed coupling transformations.