Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully construct...Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully constructed by coordinatively assembling the semi-rigid multidentate ligand 5-(1-carboxyethoxy)isophthalic acid(H₃CIA)with the Nheterocyclic ligands 1,4-di(4H-1,2,4-triazol-4-yl)benzene(1,4-dtb)and 1,4-di(1H-imidazol-1-yl)benzene(1,4-dib),respectively,around Co^(2+)ions.Single-crystal X-ray diffraction analysis revealed that in both complexes HU23 and HU24,the CIA^(3-)anions adopt aκ^(7)-coordination mode,bridging six Co^(2+)ions via their five carboxylate oxygen atoms and one ether oxygen atom.This linkage forms tetranuclear[Co4(μ3-OH)2]^(6+)units.These Co-oxo cluster units were interconnected by CIA^(3-)anions to assemble into 2D kgd-type structures featuring a 3,6-connected topology.The 2D layers were further connected by 1,4-dtb and 1,4-dib,resulting in 3D pillar-layered frameworks for HU23 and HU24.Notably,despite the similar configurations of 1,4-dtb and 1,4-dib,differences in their coordination spatial orientations lead to topological divergence in the 3D frameworks of HU23 and HU24.Topological analysis indicates that the frameworks of HU23 and HU24 can be simplified into a 3,10-connected net(point symbol:(4^(10).6^(3).8^(2))(4^(3))_(2))and a 3,8-connected tfz-d net(point symbol:(4^(3))_(2)((4^(6).6^(18).8^(4)))),respectively.This structural differentiation confirms the precise regulatory role of ligands on the topology of metal-organic frameworks.Moreover,the ultraviolet-visible absorption spectra confirmed that HU23 and HU24 have strong absorption capabilities for ultraviolet and visible light.According to the Kubelka-Munk method,their bandwidths were 2.15 and 2.08 eV,respectively,which are consistent with those of typical semiconductor materials.Variable-temperature magnetic susceptibility measurements(2-300 K)revealed significant antiferromagnetic coupling in both complexes,with their effective magnetic moments decreasing markedly as the temperature lowered.CCDC:2457554,HU23;2457553,HU24.展开更多
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul...The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.展开更多
Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(...Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid),phen(1,10-phenanthroline),bpb(1,4-bis(pyrid-4-yl)benzene),bpa(bis(4-pyridyl)amine),and copper,nickel and cadmium chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and singlecrystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three complexes crystallize in the monoclinic P21/n,tetragonal I42d,and orthorhombic P21212 space groups.The complexes exhibit molecular dimers(1)or 2D metal-organic networks(2 and 3).The catalytic performances in the Knoevenagel reaction of these complexes were investigated.Complex 1 exhibits an effective catalytic activity and excellent reusability as a heterogeneous catalyst in the Knoevenagel reaction at room temperature.CCDC:2463800,1;2463801,2;2463802,3.展开更多
文摘Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully constructed by coordinatively assembling the semi-rigid multidentate ligand 5-(1-carboxyethoxy)isophthalic acid(H₃CIA)with the Nheterocyclic ligands 1,4-di(4H-1,2,4-triazol-4-yl)benzene(1,4-dtb)and 1,4-di(1H-imidazol-1-yl)benzene(1,4-dib),respectively,around Co^(2+)ions.Single-crystal X-ray diffraction analysis revealed that in both complexes HU23 and HU24,the CIA^(3-)anions adopt aκ^(7)-coordination mode,bridging six Co^(2+)ions via their five carboxylate oxygen atoms and one ether oxygen atom.This linkage forms tetranuclear[Co4(μ3-OH)2]^(6+)units.These Co-oxo cluster units were interconnected by CIA^(3-)anions to assemble into 2D kgd-type structures featuring a 3,6-connected topology.The 2D layers were further connected by 1,4-dtb and 1,4-dib,resulting in 3D pillar-layered frameworks for HU23 and HU24.Notably,despite the similar configurations of 1,4-dtb and 1,4-dib,differences in their coordination spatial orientations lead to topological divergence in the 3D frameworks of HU23 and HU24.Topological analysis indicates that the frameworks of HU23 and HU24 can be simplified into a 3,10-connected net(point symbol:(4^(10).6^(3).8^(2))(4^(3))_(2))and a 3,8-connected tfz-d net(point symbol:(4^(3))_(2)((4^(6).6^(18).8^(4)))),respectively.This structural differentiation confirms the precise regulatory role of ligands on the topology of metal-organic frameworks.Moreover,the ultraviolet-visible absorption spectra confirmed that HU23 and HU24 have strong absorption capabilities for ultraviolet and visible light.According to the Kubelka-Munk method,their bandwidths were 2.15 and 2.08 eV,respectively,which are consistent with those of typical semiconductor materials.Variable-temperature magnetic susceptibility measurements(2-300 K)revealed significant antiferromagnetic coupling in both complexes,with their effective magnetic moments decreasing markedly as the temperature lowered.CCDC:2457554,HU23;2457553,HU24.
文摘The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.
文摘Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid),phen(1,10-phenanthroline),bpb(1,4-bis(pyrid-4-yl)benzene),bpa(bis(4-pyridyl)amine),and copper,nickel and cadmium chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and singlecrystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three complexes crystallize in the monoclinic P21/n,tetragonal I42d,and orthorhombic P21212 space groups.The complexes exhibit molecular dimers(1)or 2D metal-organic networks(2 and 3).The catalytic performances in the Knoevenagel reaction of these complexes were investigated.Complex 1 exhibits an effective catalytic activity and excellent reusability as a heterogeneous catalyst in the Knoevenagel reaction at room temperature.CCDC:2463800,1;2463801,2;2463802,3.