Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'...Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.展开更多
Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene...Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.展开更多
Synthesis and characterization of the ligand,[10-( α -tetradecylcarboxymethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid,H 4 L]and its Gd (Ⅲ) chelate are described.Protonation constants for H 4 L(lgK iH =1...Synthesis and characterization of the ligand,[10-( α -tetradecylcarboxymethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid,H 4 L]and its Gd (Ⅲ) chelate are described.Protonation constants for H 4 L(lgK iH =10.62,9.50,4.74,4.12)and the stability constant for GdL - (lgK GdL - =24.60)were determined by potentiometric titrations.The results obtained show that the basicity of the ligand is not significantly altered and the ligand still maintains the strong chelating properties of the parent DOTA after introduction of a linear chain tetradecyl group at the acetic side chain of DOTA.展开更多
Gd2O3∶Tb3+ luminescent nanoparticles were prepared by the thermal decomposition of the nanosized oxlate prepared in the reverse microemulsions based on triton X-100/n-hexyl alcohol, n-octane, and water. From TG-DTA, ...Gd2O3∶Tb3+ luminescent nanoparticles were prepared by the thermal decomposition of the nanosized oxlate prepared in the reverse microemulsions based on triton X-100/n-hexyl alcohol, n-octane, and water. From TG-DTA, XRD and FTIR analyses, the mechanism of thermal decomposition of the nanosized oxalate precursor is suggested as follows: Gd2(C2O4)3·10H2O → Gd2(C2O4)3 + 10H2O, Gd2(C2O4)3 → Gd2O2(CO3) + 3CO +2CO2, Gd2O2(CO3) → Gd2O3 + CO2. The kinetic parameters of thermal decomposition reaction-activation energy E of stage 2 and 3 are 194.6 kJ·mol-1, 110.9 kJ·mol-1, respectively, using Ozawa method. And the reaction order n is 2.9 and 0.43, respectively, according to the TG curves.展开更多
文摘Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.
文摘Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.
文摘Synthesis and characterization of the ligand,[10-( α -tetradecylcarboxymethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid,H 4 L]and its Gd (Ⅲ) chelate are described.Protonation constants for H 4 L(lgK iH =10.62,9.50,4.74,4.12)and the stability constant for GdL - (lgK GdL - =24.60)were determined by potentiometric titrations.The results obtained show that the basicity of the ligand is not significantly altered and the ligand still maintains the strong chelating properties of the parent DOTA after introduction of a linear chain tetradecyl group at the acetic side chain of DOTA.
文摘Gd2O3∶Tb3+ luminescent nanoparticles were prepared by the thermal decomposition of the nanosized oxlate prepared in the reverse microemulsions based on triton X-100/n-hexyl alcohol, n-octane, and water. From TG-DTA, XRD and FTIR analyses, the mechanism of thermal decomposition of the nanosized oxalate precursor is suggested as follows: Gd2(C2O4)3·10H2O → Gd2(C2O4)3 + 10H2O, Gd2(C2O4)3 → Gd2O2(CO3) + 3CO +2CO2, Gd2O2(CO3) → Gd2O3 + CO2. The kinetic parameters of thermal decomposition reaction-activation energy E of stage 2 and 3 are 194.6 kJ·mol-1, 110.9 kJ·mol-1, respectively, using Ozawa method. And the reaction order n is 2.9 and 0.43, respectively, according to the TG curves.