Three zinc(Ⅱ),nickel(Ⅱ),and cadmium(Ⅱ)complexes,namely[Zn(μ-Htpta)(py)_(2)]n(1),[Ni(H_(2)biim)2(H_(2)O)2][Ni(tpta)(H_(2)biim)2(H_(2)O)]2·3H_(2)O(2),and[Cd_(3)(μ4-tpta)2(μ-dpe)_(3)]_(n)(3),have been construc...Three zinc(Ⅱ),nickel(Ⅱ),and cadmium(Ⅱ)complexes,namely[Zn(μ-Htpta)(py)_(2)]n(1),[Ni(H_(2)biim)2(H_(2)O)2][Ni(tpta)(H_(2)biim)2(H_(2)O)]2·3H_(2)O(2),and[Cd_(3)(μ4-tpta)2(μ-dpe)_(3)]_(n)(3),have been constructed hydrothermally at 160℃ using H_(3)tpta([1,1':3',1″-terphenyl]-4,4',5'-tricarboxylic acid),py(pyridine),H_(2)biim(2,2'-biimidazole),dpe(1,2-di(4-pyridyl)ethylene),and zinc,nickel and cadmium chlorides,resulting in the formation of stable crystalline solids which were subsequently analyzed using infrared spectroscopy,element analysis,thermogravimetric analysis,as well as structural analyses conducted via single-crystal X-ray diffraction.The findings from these single-crystal Xray diffraction studies indicate that complexes 1-3 form crystals within the monoclinic system P2_(1)/c space group(1)or triclinic system P1 space group(2 and 3),and possess 1D,0D,and 3D structures,respectively.Complex 1 demonstrated substantial catalytic efficiency and excellent reusability as a heterogeneous catalyst in the reaction of Knoevenagel condensation under ambient temperature conditions.In addition,complex 1 also showcased notable anti-wear performance when used in polyalphaolefin synthetic lubricants.CCDC:2449810,1;2449811,2;2449812,3.展开更多
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'...Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.展开更多
Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(...Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid),phen(1,10-phenanthroline),bpb(1,4-bis(pyrid-4-yl)benzene),bpa(bis(4-pyridyl)amine),and copper,nickel and cadmium chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and singlecrystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three complexes crystallize in the monoclinic P21/n,tetragonal I42d,and orthorhombic P21212 space groups.The complexes exhibit molecular dimers(1)or 2D metal-organic networks(2 and 3).The catalytic performances in the Knoevenagel reaction of these complexes were investigated.Complex 1 exhibits an effective catalytic activity and excellent reusability as a heterogeneous catalyst in the Knoevenagel reaction at room temperature.CCDC:2463800,1;2463801,2;2463802,3.展开更多
The complexes 1-4 of cyclobutanocucurbit[5]uril(CyB5Q[5])with Na^(+)/K^(+)have been synthesized and characterized by single-crystal X-ray diffraction.The results show that although the inorganic salts are used when th...The complexes 1-4 of cyclobutanocucurbit[5]uril(CyB5Q[5])with Na^(+)/K^(+)have been synthesized and characterized by single-crystal X-ray diffraction.The results show that although the inorganic salts are used when the cations are the same and the anions are different,in complex 1,Na^(+)closes one port of CyB5Q[5]through Na—O seven coordination bonds to form a molecular bowl;in complex 3,Na^(+)completely closes the two ports of CyB5Q[5]to form a molecular capsule with six Na—O coordination bonds;in complexes 2 and 4,the two ports of CyB5Q[5]are completely closed to form K—O coordinated molecular capsules,but the K^(+)of complex 2 is six-coordinated and that of complex 4 is eight-/nine-coordinated.and complex 4 are connected by three oxygen bridges to form a 1D molecular chain.CCDC:2457122,1;2457121,2;2457400,3;2457120,4.展开更多
电导率是稀土矿渣玻璃陶瓷熔融过程中最重要的物性参数之一,研究电导率对玻璃熔体熔炼工艺优化有指导作用。为了研究尾矿玻璃陶瓷生产制造的熔融过程中稀土对熔体电导率的作用,使用分析纯试剂根据玻璃陶瓷主要化学成分制备玻璃陶瓷熔体...电导率是稀土矿渣玻璃陶瓷熔融过程中最重要的物性参数之一,研究电导率对玻璃熔体熔炼工艺优化有指导作用。为了研究尾矿玻璃陶瓷生产制造的熔融过程中稀土对熔体电导率的作用,使用分析纯试剂根据玻璃陶瓷主要化学成分制备玻璃陶瓷熔体样品,采用交流四电极法研究稀土对玻璃熔体电导率的影响规律,并结合红外光谱技术分析解释熔体电导率的变化机理。研究结果表明,硅酸盐熔体中添加La_(2)O_(3)或提高CaO/SiO_(2)比值会使熔体网络结构解聚,有效提高熔体电导率,且电导率的活化能(Activation energy of electrical conductivity)与La_(2)O_(3)含量和CaO/SiO_(2)比呈负相关关系;CaO/SiO_(2)比值较低时,La_(2)O_(3)含量对活化能影响更加显著,且红外光谱曲线硅酸盐结构带高波数段变化更明显,说明熔体结构发生更强烈的解聚效应;La_(2)O_(3)在CaO/SiO_(2)比值较低时对熔体网络结构和电导率的影响更大。展开更多
文摘Three zinc(Ⅱ),nickel(Ⅱ),and cadmium(Ⅱ)complexes,namely[Zn(μ-Htpta)(py)_(2)]n(1),[Ni(H_(2)biim)2(H_(2)O)2][Ni(tpta)(H_(2)biim)2(H_(2)O)]2·3H_(2)O(2),and[Cd_(3)(μ4-tpta)2(μ-dpe)_(3)]_(n)(3),have been constructed hydrothermally at 160℃ using H_(3)tpta([1,1':3',1″-terphenyl]-4,4',5'-tricarboxylic acid),py(pyridine),H_(2)biim(2,2'-biimidazole),dpe(1,2-di(4-pyridyl)ethylene),and zinc,nickel and cadmium chlorides,resulting in the formation of stable crystalline solids which were subsequently analyzed using infrared spectroscopy,element analysis,thermogravimetric analysis,as well as structural analyses conducted via single-crystal X-ray diffraction.The findings from these single-crystal Xray diffraction studies indicate that complexes 1-3 form crystals within the monoclinic system P2_(1)/c space group(1)or triclinic system P1 space group(2 and 3),and possess 1D,0D,and 3D structures,respectively.Complex 1 demonstrated substantial catalytic efficiency and excellent reusability as a heterogeneous catalyst in the reaction of Knoevenagel condensation under ambient temperature conditions.In addition,complex 1 also showcased notable anti-wear performance when used in polyalphaolefin synthetic lubricants.CCDC:2449810,1;2449811,2;2449812,3.
文摘Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.
文摘Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid),phen(1,10-phenanthroline),bpb(1,4-bis(pyrid-4-yl)benzene),bpa(bis(4-pyridyl)amine),and copper,nickel and cadmium chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and singlecrystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three complexes crystallize in the monoclinic P21/n,tetragonal I42d,and orthorhombic P21212 space groups.The complexes exhibit molecular dimers(1)or 2D metal-organic networks(2 and 3).The catalytic performances in the Knoevenagel reaction of these complexes were investigated.Complex 1 exhibits an effective catalytic activity and excellent reusability as a heterogeneous catalyst in the Knoevenagel reaction at room temperature.CCDC:2463800,1;2463801,2;2463802,3.
文摘The complexes 1-4 of cyclobutanocucurbit[5]uril(CyB5Q[5])with Na^(+)/K^(+)have been synthesized and characterized by single-crystal X-ray diffraction.The results show that although the inorganic salts are used when the cations are the same and the anions are different,in complex 1,Na^(+)closes one port of CyB5Q[5]through Na—O seven coordination bonds to form a molecular bowl;in complex 3,Na^(+)completely closes the two ports of CyB5Q[5]to form a molecular capsule with six Na—O coordination bonds;in complexes 2 and 4,the two ports of CyB5Q[5]are completely closed to form K—O coordinated molecular capsules,but the K^(+)of complex 2 is six-coordinated and that of complex 4 is eight-/nine-coordinated.and complex 4 are connected by three oxygen bridges to form a 1D molecular chain.CCDC:2457122,1;2457121,2;2457400,3;2457120,4.
文摘电导率是稀土矿渣玻璃陶瓷熔融过程中最重要的物性参数之一,研究电导率对玻璃熔体熔炼工艺优化有指导作用。为了研究尾矿玻璃陶瓷生产制造的熔融过程中稀土对熔体电导率的作用,使用分析纯试剂根据玻璃陶瓷主要化学成分制备玻璃陶瓷熔体样品,采用交流四电极法研究稀土对玻璃熔体电导率的影响规律,并结合红外光谱技术分析解释熔体电导率的变化机理。研究结果表明,硅酸盐熔体中添加La_(2)O_(3)或提高CaO/SiO_(2)比值会使熔体网络结构解聚,有效提高熔体电导率,且电导率的活化能(Activation energy of electrical conductivity)与La_(2)O_(3)含量和CaO/SiO_(2)比呈负相关关系;CaO/SiO_(2)比值较低时,La_(2)O_(3)含量对活化能影响更加显著,且红外光谱曲线硅酸盐结构带高波数段变化更明显,说明熔体结构发生更强烈的解聚效应;La_(2)O_(3)在CaO/SiO_(2)比值较低时对熔体网络结构和电导率的影响更大。