Two novel out-of-plane ordered quaternary borides M'_(4)VSiB_(2) (M'=Nb and Mo) have been synthesized. The out-of-plane ordered characteristic has been confirmed by the X-ray diffraction, the neutron powder di...Two novel out-of-plane ordered quaternary borides M'_(4)VSiB_(2) (M'=Nb and Mo) have been synthesized. The out-of-plane ordered characteristic has been confirmed by the X-ray diffraction, the neutron powder diffraction and the scanning transmission electron microscopy with high-angle angular dark field images. By adjusting the stoichiometric ratio of Mo and V, the 16l site preferentially occupied by relatively larger atom and 4c site by relatively smaller atom have been confirmed. The further first-principle calculation demonstrates the dynamical and thermodynamical stability of Mo_(4)VSiB_(2) o-T2 phase. This work confirms the transition metal occupation strategy of o-T2 phase and enriches the out-of-plane ordered laminated borides family.展开更多
基金supported by the National Youth Talent Support Program(No.QNBJ-2022-03)the National Natu-ral Science Foundation of China(No.52371180)the Fundamental Research Funds for the Central Universities(Nos.N2209005 and N2309001).
文摘Two novel out-of-plane ordered quaternary borides M'_(4)VSiB_(2) (M'=Nb and Mo) have been synthesized. The out-of-plane ordered characteristic has been confirmed by the X-ray diffraction, the neutron powder diffraction and the scanning transmission electron microscopy with high-angle angular dark field images. By adjusting the stoichiometric ratio of Mo and V, the 16l site preferentially occupied by relatively larger atom and 4c site by relatively smaller atom have been confirmed. The further first-principle calculation demonstrates the dynamical and thermodynamical stability of Mo_(4)VSiB_(2) o-T2 phase. This work confirms the transition metal occupation strategy of o-T2 phase and enriches the out-of-plane ordered laminated borides family.