AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(...AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS),photoluminescence(PL)spectroscopy,electron spin resonance(ESR)spectroscopy,transient photocurrent and electrochemical impedance spectroscopy(EIS)were used to characterize binary composites.Tetracycline(TC)was used as a substrate to study the performance efficiency of the degradation of photocatalysts under light conditions,and the degradation effect of TC was also evaluated under different mass concentrations and ionic contents.In addition,we further investigated the photocatalytic mechanism of the binary composite material AgVO_(3)/ZIF-8 and identified the key active components responsible for the catalytic degradation of this new photocatalyst.The experimental results show that the degradation efficiency of 10%-AZ,prepared with a molar ratio of 10%AgVO_(3)and ZIF-8 to TC,was 75.0%.This indicates that the photocatalytic activity can be maintained even under a certain ionic content,making it a suitable photocatalyst for optimal use.In addition,the photocatalytic mechanism of binary composites was further studied by the active species trapping experiment.展开更多
Besides Li+ and Mg2+, the electrochemical behavior of Na^+ and K+ in LiFePO4/FePO4 structures was studied since they naturally coexist with Li+ and Mg2+ in brine. The cyclic voltammogram (CV) results indicated...Besides Li+ and Mg2+, the electrochemical behavior of Na^+ and K+ in LiFePO4/FePO4 structures was studied since they naturally coexist with Li+ and Mg2+ in brine. The cyclic voltammogram (CV) results indicated that Na+ exhibits some reversibility in LiFePO4/FePO4 structures. Its reduction peak appears at -0.511 V, more negative than that of Li+ (-0.197 V), meaning that a relatively positive potential is beneficial for decreasing Na+ insertion. The reduction peak of K+ could not be found clearly, indicating that K+ is difficult to insert into the FePO4 structure. Furthermore, technical experiments using real brine with a super high Mg/Li ratio (493) at a cell voltage of 0.7V showed that the final extracted capacity of Li+, Mg2+ and Na+ that can be attained in 1 g LiFePO4 is 24.1 mg, 7.32 mg and 4.61 mg, respectively. The Mg/Li ratio can be reduced to 0.30 from 493, and the Na/Li ratio to 0.19 from 16.7, which proves that, even in super high Mg/Li ratio brine, if a cell voltage is appropriately controlled, it is possible to separate Li^+ and other impurities effectively.展开更多
文摘AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS),photoluminescence(PL)spectroscopy,electron spin resonance(ESR)spectroscopy,transient photocurrent and electrochemical impedance spectroscopy(EIS)were used to characterize binary composites.Tetracycline(TC)was used as a substrate to study the performance efficiency of the degradation of photocatalysts under light conditions,and the degradation effect of TC was also evaluated under different mass concentrations and ionic contents.In addition,we further investigated the photocatalytic mechanism of the binary composite material AgVO_(3)/ZIF-8 and identified the key active components responsible for the catalytic degradation of this new photocatalyst.The experimental results show that the degradation efficiency of 10%-AZ,prepared with a molar ratio of 10%AgVO_(3)and ZIF-8 to TC,was 75.0%.This indicates that the photocatalytic activity can be maintained even under a certain ionic content,making it a suitable photocatalyst for optimal use.In addition,the photocatalytic mechanism of binary composites was further studied by the active species trapping experiment.
基金Project(K1205034-11) supported by Technology Program of Changsha,China
文摘Besides Li+ and Mg2+, the electrochemical behavior of Na^+ and K+ in LiFePO4/FePO4 structures was studied since they naturally coexist with Li+ and Mg2+ in brine. The cyclic voltammogram (CV) results indicated that Na+ exhibits some reversibility in LiFePO4/FePO4 structures. Its reduction peak appears at -0.511 V, more negative than that of Li+ (-0.197 V), meaning that a relatively positive potential is beneficial for decreasing Na+ insertion. The reduction peak of K+ could not be found clearly, indicating that K+ is difficult to insert into the FePO4 structure. Furthermore, technical experiments using real brine with a super high Mg/Li ratio (493) at a cell voltage of 0.7V showed that the final extracted capacity of Li+, Mg2+ and Na+ that can be attained in 1 g LiFePO4 is 24.1 mg, 7.32 mg and 4.61 mg, respectively. The Mg/Li ratio can be reduced to 0.30 from 493, and the Na/Li ratio to 0.19 from 16.7, which proves that, even in super high Mg/Li ratio brine, if a cell voltage is appropriately controlled, it is possible to separate Li^+ and other impurities effectively.