We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between e...We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between existing measurements and evaluations of this cross-section.Using an unfolding iteration method,^(63)Cu(γ,n)data were obtained with an uncertainty of less than 4%,and the inconsistencies between the available experimental data were discussed.Theγ-ray strength function of^(63)Cu(γ,n)was successfully extracted as an experimental constraint.We further calculated the cross-section of the radiative neutron capture reaction^(62)Cu(n,γ)using the TALYS code.Our calculation method enables the extraction of(n,γ)cross-sections for unstable nuclides.展开更多
In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated ...In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications.展开更多
Neutron-induced gamma-ray imaging is a spectroscopic technique that uses characteristic gamma rays to infer the elemental distribution of an object.Currently,this technique requires the use of large facilities to supp...Neutron-induced gamma-ray imaging is a spectroscopic technique that uses characteristic gamma rays to infer the elemental distribution of an object.Currently,this technique requires the use of large facilities to supply a high neutron flux and a time-consuming detection procedure involving direct collimating measurements.In this study,a new method based on low neutron flux was proposed.A single-pixel gamma-ray detector combined with random pattern gamma-ray masks was used to measure the characteristic gamma rays emitted from the sample.Images of the elemental distribution in the sample,comprising 30×30 pixels,were reconstructed using the maximum-likelihood expectation-maximization algorithm.The results demonstrate that the elemental imaging of the sample can be accurately determined using this method.The proposed approach,which eliminates the need for high neutron flux and scanning measurements,can be used for in-field imaging applications.展开更多
Ground-based arrays of imaging atmospheric Cherenkov telescopes(IACTs)are the most sensitiveγ-ray detectors for energies of approximately 100 Ge V and above.One such IACT is the High Altitude Detection of Astronomica...Ground-based arrays of imaging atmospheric Cherenkov telescopes(IACTs)are the most sensitiveγ-ray detectors for energies of approximately 100 Ge V and above.One such IACT is the High Altitude Detection of Astronomical Radiation(HADAR)experiment,which uses a large aperture refractive water lens system to capture atmospheric Cherenkov photons(i.e.,the imaging atmospheric Cherenkov technique).The telescope array has a low threshold energy and large field of view,and can continuously scan the area of the sky being observed,which is conducive to monitoring and promptly responding to transient phenomena.The process ofγ-hadron separation is essential in very-high-energy(>30 Ge V)γ-ray astronomy and is a key factor for the successful utilization of IACTs.In this study,Monte Carlo simulations were carried out to model the response of cosmic rays within the HADAR detectors.By analyzing the Hillas parameters and the distance between the event core and the telescope,the distinction between air showers initiated byγ-rays and those initiated by cosmic rays was determined.Additionally,a Quality Factor was introduced to assess the telescope’s ability to suppress the background and to provide a more effective characterization of its performance.展开更多
基金supported by the National Key Research and Development Program(Nos.2023YFA1606901 and 2022YFA1602400)National Natural Science Foundation of China(Nos.U2230133,12275338,and 12388102)Open Fund of the CIAE Key Laboratory of Nuclear Data(No.JCKY2022201C152).
文摘We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between existing measurements and evaluations of this cross-section.Using an unfolding iteration method,^(63)Cu(γ,n)data were obtained with an uncertainty of less than 4%,and the inconsistencies between the available experimental data were discussed.Theγ-ray strength function of^(63)Cu(γ,n)was successfully extracted as an experimental constraint.We further calculated the cross-section of the radiative neutron capture reaction^(62)Cu(n,γ)using the TALYS code.Our calculation method enables the extraction of(n,γ)cross-sections for unstable nuclides.
基金supported by the National Natural Science Foundation of China(No.12005198).
文摘In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications.
基金supported by the National Natural Science Foundation of China(Nos.12105143 and 11975121)the China Postdoctoral Science Foundation(No.2023M741453)+1 种基金the Engineering Research Center of Nuclear Technology Application(No.HJSJYB2020-1)the Key Laboratory of Ionizing Radiation Metering and Safety Evaluation for Jiangsu Province Market Regulation,and the Jiangsu Province Excellent Postdoctoral Program(No.JB23057).
文摘Neutron-induced gamma-ray imaging is a spectroscopic technique that uses characteristic gamma rays to infer the elemental distribution of an object.Currently,this technique requires the use of large facilities to supply a high neutron flux and a time-consuming detection procedure involving direct collimating measurements.In this study,a new method based on low neutron flux was proposed.A single-pixel gamma-ray detector combined with random pattern gamma-ray masks was used to measure the characteristic gamma rays emitted from the sample.Images of the elemental distribution in the sample,comprising 30×30 pixels,were reconstructed using the maximum-likelihood expectation-maximization algorithm.The results demonstrate that the elemental imaging of the sample can be accurately determined using this method.The proposed approach,which eliminates the need for high neutron flux and scanning measurements,can be used for in-field imaging applications.
基金supported by the Central Government Funds for Local Scientific and Technological Development(grant No.JDRC2023000009)Tibet University Postgraduate Students’High-Level Talent Training Plan Project(grant No.2021-GSP-S038)。
文摘Ground-based arrays of imaging atmospheric Cherenkov telescopes(IACTs)are the most sensitiveγ-ray detectors for energies of approximately 100 Ge V and above.One such IACT is the High Altitude Detection of Astronomical Radiation(HADAR)experiment,which uses a large aperture refractive water lens system to capture atmospheric Cherenkov photons(i.e.,the imaging atmospheric Cherenkov technique).The telescope array has a low threshold energy and large field of view,and can continuously scan the area of the sky being observed,which is conducive to monitoring and promptly responding to transient phenomena.The process ofγ-hadron separation is essential in very-high-energy(>30 Ge V)γ-ray astronomy and is a key factor for the successful utilization of IACTs.In this study,Monte Carlo simulations were carried out to model the response of cosmic rays within the HADAR detectors.By analyzing the Hillas parameters and the distance between the event core and the telescope,the distinction between air showers initiated byγ-rays and those initiated by cosmic rays was determined.Additionally,a Quality Factor was introduced to assess the telescope’s ability to suppress the background and to provide a more effective characterization of its performance.