The alkali adatoms with controlled coverage on the surface have been demonstrated to effectively tune the surface band of quantum materials through in situ electron doping.However,the interplay of orderly arranged alk...The alkali adatoms with controlled coverage on the surface have been demonstrated to effectively tune the surface band of quantum materials through in situ electron doping.However,the interplay of orderly arranged alkali adatoms with the surface states of quantum materials remains unexplored.Here,by using low-temperature scanning tunneling microscopy/spectroscopy(STM/S),we observed the emergent 3×3 super modulation of electronic states on the√3×√3R30°(R3)Cs ordered surface of kagome superconductor CsV_(3)Sb_(5).The nondispersive 3×3 superlattice at R3 ordered surface shows contrast inversion in positive and negative differential conductance maps,indicating a charge order origin.The 3×3 charge order is suppressed with increasing temperature and undetectable at a critical temperature of~62 K.Furthermore,in the Ta substituted sample CsV_(2.6)Ta_(0.4)Sb_(5),where long-range 2×2×2 charge density wave is significantly suppressed,the 3×3 charge order on the R3 ordered surface becomes blurred and much weaker than that in the undoped sample.It indicates that the 3×3 charge order on the R3 ordered surface is directly correlated to the bulk charge density waves in CsV_(3)Sb_(5).Our work provides a new platform for understanding and manipulating the cascade of charge orders in kagome superconductors.展开更多
The recently discovered high-temperature superconductor La_(3)Ni_(2)O_(7)under high pressure has sparked considerable debate.Central controversies revolve around whether interlayer or intralayer pairing mechanisms dom...The recently discovered high-temperature superconductor La_(3)Ni_(2)O_(7)under high pressure has sparked considerable debate.Central controversies revolve around whether interlayer or intralayer pairing mechanisms dominate and whether hybridization plays a crucial role in establishing superconductivity.However,experimental clarification remains challenging due to the limitations of state-of-the-art techniques under high-pressure conditions.Here,we propose that quasiparticle tunneling and Andreev reflection could offer practical methods to differentiate pairing scenarios.Specifically,we predict that hybridization between the d_(x^(2)-y^(2))metallic bands and the strongly renormalized flat d_(z^(2))quasiparticle bands may induce an asymmetric Fano line shape.In the superconducting state,we show that Andreev reflection would be significantly suppressed in interlayer pairing superconductivity with limited interlayer hopping.We recommend future experiments to test these predictions and shed light on the fundamental physics of superconducting La_(3)Ni_(2)O_(7)and other multi-layer nickelate superconductors.展开更多
The fracture behavior of superconducting tapes with central and edge oblique cracks subject to electromagnetic forces is investigated. Maxwell's equations and the critical state-Bean model are used to analytically...The fracture behavior of superconducting tapes with central and edge oblique cracks subject to electromagnetic forces is investigated. Maxwell's equations and the critical state-Bean model are used to analytically determine the magnetic flux density and electromagnetic force distributions in superconducting tapes containing central and edge oblique cracks. The distributed dislocation technique(DDT) transforms the mixed boundary value problem into a Cauchy singular integral equation, which is then solved by the Gauss-Chebyshev quadrature method to determine the stress intensity factors(SIFs).The model's accuracy is validated by comparing the calculated electromagnetic force distribution for the edge oblique crack and the SIFs for both crack types with the existing results. The findings indicate that the current and electromagnetic forces are significantly affected by the crack length and oblique angle. Specifically, for central oblique cracks, a smaller oblique angle enhances the risk of crack propagation, and a higher initial magnetization intensity poses greater danger under field cooling(FC) excitation. In contrast, for edge oblique cracks, a larger angle increases the likelihood of tape fractures. This study provides important insights into the fracture behavior and mechanical failure mechanisms of superconducting tapes with oblique cracks.展开更多
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app...Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.展开更多
The discovery of high-temperature superconductivity near 80K in bilayer nickelate La_(3)Ni_(2)O_(7)under high pressures has renewed the exploration of superconducting nickelate in bulk materials.The extension of super...The discovery of high-temperature superconductivity near 80K in bilayer nickelate La_(3)Ni_(2)O_(7)under high pressures has renewed the exploration of superconducting nickelate in bulk materials.The extension of superconductivity in other nickelates in a broader family is also essential.Here,we report the experimental observation of superconducting signature in trilayer nickelate La_(4)Ni_(3)O_(10)under high pressures.By using a modified solgel method and post-annealing treatment under high oxygen pressure,we successfully obtained polycrystalline La_(4)Ni_(3)O_(10)samples with different transport behaviors at ambient pressure.Then we performed high-pressure electrical resistance measurements on these samples in a diamond-anvil-cell apparatus.Surprisingly,the signature of possible superconducting transition with a maximum transition temperature(T_(c))of about 20K under high pressures is observed,as evidenced by a clear drop of resistance and the suppression of resistance drops under magnetic fields.Although the resistance drop is sample-dependent and relatively small,it appears in all of our measured samples.We argue that the observed superconducting signal is most likely to originate from the main phase of La_(4)Ni_(3)O_(10).Our findings will motivate the exploration of superconductivity in a broader family of nickelates and shed light on the understanding of the underlying mechanisms of high-T_(c) superconductivity in nickelates.展开更多
Motivated by the recent discovery of high-temperature superconductivity in bilayer La_(3)Ni_(2)O_(7) under pressure,we study its electronic properties and superconductivity due to strong electron correlation.Using the...Motivated by the recent discovery of high-temperature superconductivity in bilayer La_(3)Ni_(2)O_(7) under pressure,we study its electronic properties and superconductivity due to strong electron correlation.Using the inversion symmetry,we decouple the low-energy electronic structure into block-diagonal symmetric and antisymmetric sectors.It is found that the antisymmetric sector can be reduced to a one-band system near half filling,while the symmetric bands occupied by about two electrons are heavily overdoped individually.Using the strong coupling mean field theory,we obtain strong superconducting pairing with B_(1g)symmetry in the antisymmetric sector.We propose that due to the spin-orbital exchange coupling between the two sectors,B_(1g)pairing is induced in the symmetric bands,which in turn boosts the pairing gap in the antisymmetric band and enhances the high-temperature superconductivity with a congruent d-wave symmetry in pressurized La_(3)Ni_(2)O_(7).展开更多
By casting evolution to the Bloch sphere, the dynamics of 2 × 2 matrix non-Hermitian systems are investigated in detail. This investigation reveals that there are four kinds of dynamical modes for such systems. T...By casting evolution to the Bloch sphere, the dynamics of 2 × 2 matrix non-Hermitian systems are investigated in detail. This investigation reveals that there are four kinds of dynamical modes for such systems. The different modes are classified by different kinds of fixed points, namely,the elliptic point, spiral point, critical node, and degenerate point. The Hermitian systems and the unbroken PT non-Hermitian cases belong to the category with elliptic points. The degenerate point just corresponds to the systems with exceptional point(EP). The topological properties of the fixed point are also discussed. It is interesting that the topological charge for the degenerate point is two, while the others are one.展开更多
We construct a doped holographic superconductor in the Gubser–Rocha model,and realize a superconducting dome in the middle of the temperature-doping phase diagram.It is worth noting that unlike in previous research,t...We construct a doped holographic superconductor in the Gubser–Rocha model,and realize a superconducting dome in the middle of the temperature-doping phase diagram.It is worth noting that unlike in previous research,the profile of our dome shrinks inward near to zero temperature.From the numerical observation for the coupling dependence of the phase diagram,we find that the coupling between the two gauge fields plays a crucial role in the formation of the dome.We also analytically calculate the DC conductivity of the normal phase of the system in the momentum dissipation and obtain resistivity which is proportional to the temperature.The AC conductivity is calculated numerically.展开更多
基金Project supported by the National Key Research and Development Project of China(Grant Nos.2022YFA1204100 and 2019YFA0308500)the National Natural Science Foundation of China(Grant No.62488201)+1 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘The alkali adatoms with controlled coverage on the surface have been demonstrated to effectively tune the surface band of quantum materials through in situ electron doping.However,the interplay of orderly arranged alkali adatoms with the surface states of quantum materials remains unexplored.Here,by using low-temperature scanning tunneling microscopy/spectroscopy(STM/S),we observed the emergent 3×3 super modulation of electronic states on the√3×√3R30°(R3)Cs ordered surface of kagome superconductor CsV_(3)Sb_(5).The nondispersive 3×3 superlattice at R3 ordered surface shows contrast inversion in positive and negative differential conductance maps,indicating a charge order origin.The 3×3 charge order is suppressed with increasing temperature and undetectable at a critical temperature of~62 K.Furthermore,in the Ta substituted sample CsV_(2.6)Ta_(0.4)Sb_(5),where long-range 2×2×2 charge density wave is significantly suppressed,the 3×3 charge order on the R3 ordered surface becomes blurred and much weaker than that in the undoped sample.It indicates that the 3×3 charge order on the R3 ordered surface is directly correlated to the bulk charge density waves in CsV_(3)Sb_(5).Our work provides a new platform for understanding and manipulating the cascade of charge orders in kagome superconductors.
基金supported by the National Natural Science Foundation of China(Grant No.12474136)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33010100)the National Key Research and Development Program of China(Grant No.2022YFA1402203)。
文摘The recently discovered high-temperature superconductor La_(3)Ni_(2)O_(7)under high pressure has sparked considerable debate.Central controversies revolve around whether interlayer or intralayer pairing mechanisms dominate and whether hybridization plays a crucial role in establishing superconductivity.However,experimental clarification remains challenging due to the limitations of state-of-the-art techniques under high-pressure conditions.Here,we propose that quasiparticle tunneling and Andreev reflection could offer practical methods to differentiate pairing scenarios.Specifically,we predict that hybridization between the d_(x^(2)-y^(2))metallic bands and the strongly renormalized flat d_(z^(2))quasiparticle bands may induce an asymmetric Fano line shape.In the superconducting state,we show that Andreev reflection would be significantly suppressed in interlayer pairing superconductivity with limited interlayer hopping.We recommend future experiments to test these predictions and shed light on the fundamental physics of superconducting La_(3)Ni_(2)O_(7)and other multi-layer nickelate superconductors.
基金Project supported by the National Natural Science Foundation of China (Nos. 12232005 and 12072101)the Ningxia Natural Science Foundation of China (No. 2024AAC04004)。
文摘The fracture behavior of superconducting tapes with central and edge oblique cracks subject to electromagnetic forces is investigated. Maxwell's equations and the critical state-Bean model are used to analytically determine the magnetic flux density and electromagnetic force distributions in superconducting tapes containing central and edge oblique cracks. The distributed dislocation technique(DDT) transforms the mixed boundary value problem into a Cauchy singular integral equation, which is then solved by the Gauss-Chebyshev quadrature method to determine the stress intensity factors(SIFs).The model's accuracy is validated by comparing the calculated electromagnetic force distribution for the edge oblique crack and the SIFs for both crack types with the existing results. The findings indicate that the current and electromagnetic forces are significantly affected by the crack length and oblique angle. Specifically, for central oblique cracks, a smaller oblique angle enhances the risk of crack propagation, and a higher initial magnetization intensity poses greater danger under field cooling(FC) excitation. In contrast, for edge oblique cracks, a larger angle increases the likelihood of tape fractures. This study provides important insights into the fracture behavior and mechanical failure mechanisms of superconducting tapes with oblique cracks.
基金Project supported by the National Natural Science Foundation of China(Nos.11932008 and 12272156)the Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb06)+1 种基金the Gansu Science and Technology ProgramLanzhou City’s Scientific Research Funding Subsidy to Lanzhou University of China。
文摘Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.
基金Projects(52172271,12374378,52307026)supported by the National Natural Science Foundation of ChinaProject(2022YFE03150200)supported by the National Key R&D Program of China+1 种基金Project(22511100200)supported by Shanghai Science and Technology Innovation Program,ChinaProject(XDB25000000)supported by the Strategic Priority Research Program of the Chinese Academy of Sciences。
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403201)the National Natural Science Foundation of China(Grant Nos.12204231,12061131001,52072170,and 11927809)the Strategic Priority Research Program(B)of Chinese Academy of Sciences(Grant No.XDB25000000).
文摘The discovery of high-temperature superconductivity near 80K in bilayer nickelate La_(3)Ni_(2)O_(7)under high pressures has renewed the exploration of superconducting nickelate in bulk materials.The extension of superconductivity in other nickelates in a broader family is also essential.Here,we report the experimental observation of superconducting signature in trilayer nickelate La_(4)Ni_(3)O_(10)under high pressures.By using a modified solgel method and post-annealing treatment under high oxygen pressure,we successfully obtained polycrystalline La_(4)Ni_(3)O_(10)samples with different transport behaviors at ambient pressure.Then we performed high-pressure electrical resistance measurements on these samples in a diamond-anvil-cell apparatus.Surprisingly,the signature of possible superconducting transition with a maximum transition temperature(T_(c))of about 20K under high pressures is observed,as evidenced by a clear drop of resistance and the suppression of resistance drops under magnetic fields.Although the resistance drop is sample-dependent and relatively small,it appears in all of our measured samples.We argue that the observed superconducting signal is most likely to originate from the main phase of La_(4)Ni_(3)O_(10).Our findings will motivate the exploration of superconductivity in a broader family of nickelates and shed light on the understanding of the underlying mechanisms of high-T_(c) superconductivity in nickelates.
基金the National Key R&D Program of China(Grant No.2022YFA1403900)the National Natural Science Foundation of China(Grant Nos.11888101,12174428,and 11920101005)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB28000000 and XDB33000000)the New Cornerstone Investigator Programthe Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.2022YSBR-048)supported by the U.S.Department of Energy,Basic Energy Sciences(Grant No.DE-FG02-99ER45747)。
文摘Motivated by the recent discovery of high-temperature superconductivity in bilayer La_(3)Ni_(2)O_(7) under pressure,we study its electronic properties and superconductivity due to strong electron correlation.Using the inversion symmetry,we decouple the low-energy electronic structure into block-diagonal symmetric and antisymmetric sectors.It is found that the antisymmetric sector can be reduced to a one-band system near half filling,while the symmetric bands occupied by about two electrons are heavily overdoped individually.Using the strong coupling mean field theory,we obtain strong superconducting pairing with B_(1g)symmetry in the antisymmetric sector.We propose that due to the spin-orbital exchange coupling between the two sectors,B_(1g)pairing is induced in the symmetric bands,which in turn boosts the pairing gap in the antisymmetric band and enhances the high-temperature superconductivity with a congruent d-wave symmetry in pressurized La_(3)Ni_(2)O_(7).
基金supported by the National Natural Science Foundation of China(Grant No.12088101,and U2330401).
文摘By casting evolution to the Bloch sphere, the dynamics of 2 × 2 matrix non-Hermitian systems are investigated in detail. This investigation reveals that there are four kinds of dynamical modes for such systems. The different modes are classified by different kinds of fixed points, namely,the elliptic point, spiral point, critical node, and degenerate point. The Hermitian systems and the unbroken PT non-Hermitian cases belong to the category with elliptic points. The degenerate point just corresponds to the systems with exceptional point(EP). The topological properties of the fixed point are also discussed. It is interesting that the topological charge for the degenerate point is two, while the others are one.
基金supported by the National Natural Science Foundation of China(Grant Nos.12275166,11875184,12147158 and 11805117)the NFSC-NFR joint program 12311540141.
文摘We construct a doped holographic superconductor in the Gubser–Rocha model,and realize a superconducting dome in the middle of the temperature-doping phase diagram.It is worth noting that unlike in previous research,the profile of our dome shrinks inward near to zero temperature.From the numerical observation for the coupling dependence of the phase diagram,we find that the coupling between the two gauge fields plays a crucial role in the formation of the dome.We also analytically calculate the DC conductivity of the normal phase of the system in the momentum dissipation and obtain resistivity which is proportional to the temperature.The AC conductivity is calculated numerically.