Quantum control allows a wide range of quantum operations employed in molecular physics,nuclear magnetic resonance and quantum information processing.Thanks to the existing microelectronics industry,semiconducting qub...Quantum control allows a wide range of quantum operations employed in molecular physics,nuclear magnetic resonance and quantum information processing.Thanks to the existing microelectronics industry,semiconducting qubits,where quantum information is encoded in spin or charge degree freedom of electrons or nuclei in semiconductor quantum dots,constitute a highly competitive candidate for scalable solid-state quantum technologies.In quantum information processing,advanced control techniques are needed to realize quantum manipulations with both high precision and noise resilience.In this review,we first introduce the basics of various widely-used control methods,including resonant excitation,adabatic passage,shortcuts to adiabaticity,composite pulses,and quantum optimal control.Then we review the practical aspects in applying these methods to realize accurate and robust quantum gates for single semiconductor qubits,such as Loss–DiVincenzo spin qubit,spinglet-triplet qubit,exchange-only qubit and charge qubit.展开更多
The formation of self assembled CdSe quantum dots under Stranski Krastanow (S K) mode by low pressure metalorganic chemical vapor deposition (LP MOCVD) was reported for the first time. The samples were grown directly ...The formation of self assembled CdSe quantum dots under Stranski Krastanow (S K) mode by low pressure metalorganic chemical vapor deposition (LP MOCVD) was reported for the first time. The samples were grown directly on GaAs (100) surfaces by LP MOCVD. DimethylSelenide (DMSe) and DimethylCadmium (DMCd) were used as precursors. The growth pressure was kept at 2 93×10 4Pa and the growth temperature was 500℃. CdSe with the thickness of about 2 monolayers was grown directly on GaAs (100) surfaces. For the purpose of AFM observation, this uncapped sample was cooled down immediately to room temperature and was monitored under a Digital Instruments Nanoscope Ⅲa system at the same day of growth. The AFM images show that the average diameter, height and density of those self assembled CdSe quantum dots are 50±15nm, 13±4nm and 5μm -2 , respectively. And those dots’ diameter height ratio is about 4~5, just the same as those results observed in other Ⅱ Ⅵ and Ⅲ Ⅵ compounds which were grown under S K mode by MBE.展开更多
制备了Mn掺杂Zn-In-S量子点并研究了Zn/In的量比和反应温度对其发光性质的影响。在Mn掺杂的Zn-In-S量子点的发光谱中观测到一个600 nm发光带。通过改变Zn/In的量比,掺杂量子点的吸收带隙可从3.76 e V(330 nm)调谐到2.82 e V(440 nm),但6...制备了Mn掺杂Zn-In-S量子点并研究了Zn/In的量比和反应温度对其发光性质的影响。在Mn掺杂的Zn-In-S量子点的发光谱中观测到一个600 nm发光带。通过改变Zn/In的量比,掺杂量子点的吸收带隙可从3.76 e V(330 nm)调谐到2.82 e V(440 nm),但600 nm发光峰的波长只有略微移动。这些掺杂量子点的最长荧光寿命为2.14 ms。当反应温度从200℃增加到230℃时,掺杂量子点的发光强度增加并达到最大值;而继续升高温度至260℃时,发光强度迅速减弱。此外,测量了Mn掺杂Zn-In-S量子点的变温发光光谱。发现随着温度的升高,发光峰位发生蓝移,发光强度明显下降。分析认为,Mn掺杂Zn-In-S量子点的600 nm发光来自于Mn2+离子的4T1和6A1之间的辐射复合。展开更多
利用退火技术 ,实现了在低温 Ga As外延层上 In As量子点的生长 .透射电镜 (TEM)研究表明 ,低温 Ga As外延层上生长的 In As量子点比通常生长的 In As量子点明显变小 ,且密度变大 ,认为是由于低温 Ga As中的点缺陷以及 As沉淀引起的 :...利用退火技术 ,实现了在低温 Ga As外延层上 In As量子点的生长 .透射电镜 (TEM)研究表明 ,低温 Ga As外延层上生长的 In As量子点比通常生长的 In As量子点明显变小 ,且密度变大 ,认为是由于低温 Ga As中的点缺陷以及 As沉淀引起的 :点缺陷释放了部分弹性能 ,使得量子点变小 ,而 As沉淀可能是量子点密度变大的原因 .在光致发光谱 (PL )上 ,退火低温外延层上生长的量子点的发光峰能量较高 。展开更多
基金support by the National Natural Science Foundation of China(Nos.12174379,E31Q02BG)the Chinese Academy of Sciences(Nos.E0SEBB11,E27RBB11)+1 种基金the Innovation Program for Quantum Science and Technology(No.2021ZD0302300)Chinese Academy of Sciences Project for Young Scientists in Basic Research(No.YSBR-090)。
文摘Quantum control allows a wide range of quantum operations employed in molecular physics,nuclear magnetic resonance and quantum information processing.Thanks to the existing microelectronics industry,semiconducting qubits,where quantum information is encoded in spin or charge degree freedom of electrons or nuclei in semiconductor quantum dots,constitute a highly competitive candidate for scalable solid-state quantum technologies.In quantum information processing,advanced control techniques are needed to realize quantum manipulations with both high precision and noise resilience.In this review,we first introduce the basics of various widely-used control methods,including resonant excitation,adabatic passage,shortcuts to adiabaticity,composite pulses,and quantum optimal control.Then we review the practical aspects in applying these methods to realize accurate and robust quantum gates for single semiconductor qubits,such as Loss–DiVincenzo spin qubit,spinglet-triplet qubit,exchange-only qubit and charge qubit.
文摘The formation of self assembled CdSe quantum dots under Stranski Krastanow (S K) mode by low pressure metalorganic chemical vapor deposition (LP MOCVD) was reported for the first time. The samples were grown directly on GaAs (100) surfaces by LP MOCVD. DimethylSelenide (DMSe) and DimethylCadmium (DMCd) were used as precursors. The growth pressure was kept at 2 93×10 4Pa and the growth temperature was 500℃. CdSe with the thickness of about 2 monolayers was grown directly on GaAs (100) surfaces. For the purpose of AFM observation, this uncapped sample was cooled down immediately to room temperature and was monitored under a Digital Instruments Nanoscope Ⅲa system at the same day of growth. The AFM images show that the average diameter, height and density of those self assembled CdSe quantum dots are 50±15nm, 13±4nm and 5μm -2 , respectively. And those dots’ diameter height ratio is about 4~5, just the same as those results observed in other Ⅱ Ⅵ and Ⅲ Ⅵ compounds which were grown under S K mode by MBE.
文摘利用退火技术 ,实现了在低温 Ga As外延层上 In As量子点的生长 .透射电镜 (TEM)研究表明 ,低温 Ga As外延层上生长的 In As量子点比通常生长的 In As量子点明显变小 ,且密度变大 ,认为是由于低温 Ga As中的点缺陷以及 As沉淀引起的 :点缺陷释放了部分弹性能 ,使得量子点变小 ,而 As沉淀可能是量子点密度变大的原因 .在光致发光谱 (PL )上 ,退火低温外延层上生长的量子点的发光峰能量较高 。