Ultrabright femtosecond X-ray pulses generated by X-ray free-electron lasers(XFELs)enable the high-resolution determination of nanoparticle structures without crystallization or freezing.As each particle that interact...Ultrabright femtosecond X-ray pulses generated by X-ray free-electron lasers(XFELs)enable the high-resolution determination of nanoparticle structures without crystallization or freezing.As each particle that interacts with the pulse is destroyed,an aerodynamic lens(ADL)is used to update the particles by focusing them into a narrow beam in real time.Current single-particle imaging(SPI)experiments are limited by an insufficient number of diffraction patterns;therefore,optimized ADLs are required to improve the hit rate and signal-to-noise ratio,particularly for small particles.Herein,an efficient and simple method for designing ADLs and a new ADL specifically designed for SPI using this method are presented.A new method is proposed based on the functional relationship between a key parameter and its influencing parameters in the ADL,which is established through theoretical analysis and numerical simulations.A detailed design process for the new ADL is also introduced.Both simulations and experiments are performed to characterize the behavior of the particles in the ADL.The results show that particles with diameters ranging from 30 to 500 nm can be effectively focused into a narrow beam.In particular,particles smaller than 100 nm exhibit better performance at lower flow rates than the injector currently used in SPI.The new ADL increases the beam density and reduces the gas background noise.This new method facilitates the design of ADLs for SPI and has potential applications in other fields that utilize focused aerosol beams.展开更多
In the exploration of celestial bodies,such as Mars,the Moon,and asteroids,X-ray fluorescence analysis has emerged as a critical tool for elemental analysis.However,the varying selection rules and excitation sources i...In the exploration of celestial bodies,such as Mars,the Moon,and asteroids,X-ray fluorescence analysis has emerged as a critical tool for elemental analysis.However,the varying selection rules and excitation sources introduce complexity.Specifically,these discrepancies can cause variations in the intensities of the characteristic spectral lines emitted by identical elements.These variations,compounded by the minimal energy spacing between these spectral lines,pose substantial challenges for conventional silicon drift detectors(SDD),hindering their ability to accurately differentiate these lines and provide detailed insights into the material structure.To overcome this challenge,a cryogenic X-ray spectrometer based on transition-edge sensor(TES)detector arrays is required to achieve precise measurements.This study measured and analyzed the K-edge characteristic lines of copper and the diverse L-edge characteristic lines of tungsten using a comparative analysis of the electron and X-ray excitation processes.For the electron excitation experiments,copper and tungsten targets were employed as X-ray sources,as they emit distinctive X-ray spectra upon electron-beam bombardment.In the photon excitation experiments,a molybdenum target was used to produce a continuous spectrum with the prominent Mo Kαlines to emit pure copper and tungsten samples.TES detectors were used for the comparative spectroscopic analysis.The initial comparison revealed no substantial differences in the Kαand Kβlines of copper across different excitation sources.Similarly,the Lαlines of tungsten exhibited uniformity under different excitation sources.However,this investigation revealed pronounced differences within the Lβline series.The study found that XRF spectra preferentially excite outer-shell electrons,in contrast to intrinsic spectra,owing to different photon and electron interaction mechanisms.Photon interactions are selection-ruledependent and involve a single electron,whereas electron interactions can involve multiple electrons without such limitations.This leads to varied excitation transitions,as evidenced in the observed Lβline series.展开更多
Operando X-ray diffraction(XRD)is an important characterization tool for real-time monitoring of structural changes in materials under different reaction conditions.In this study,we developed a laboratory-based diffra...Operando X-ray diffraction(XRD)is an important characterization tool for real-time monitoring of structural changes in materials under different reaction conditions.In this study,we developed a laboratory-based diffractometer that could capture a full XRD spectrum within 10 s.The instrument has several advanced features.First,it uses a Ga–In alloy metal-jet X-ray source,thereby achieving high X-ray flux with a brightness of up to 3.0×10^(10) photons/(s·mm^(2)·mrad2).Second,it employs an ellipsoidal mirror with a multilayer coating to produce quasi-parallel monochromatic light characterized by a divergence of 0.6 mrad and an energy resolution of 5.9×10^(−3).Third,it is equipped with a high-efficiency,high-signal-to-noise-ratio Pilatus 3R 1M detector for collecting diffraction signals.These features make the developed instrument applicable in studying rapid phase transitions in lithium-ion batteries,especially under extremely fast charge–discharge conditions.The data quality was comparable to that of synchrotron radiation XRD.展开更多
基金supported by the Major State Basic Research Development Program of China(No.2022YFA1603703)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 37040303)+1 种基金National Natural Science Foundation of China(No.12335020)Shanghai Soft X-ray Free Electron Laser Facility beamline project.
文摘Ultrabright femtosecond X-ray pulses generated by X-ray free-electron lasers(XFELs)enable the high-resolution determination of nanoparticle structures without crystallization or freezing.As each particle that interacts with the pulse is destroyed,an aerodynamic lens(ADL)is used to update the particles by focusing them into a narrow beam in real time.Current single-particle imaging(SPI)experiments are limited by an insufficient number of diffraction patterns;therefore,optimized ADLs are required to improve the hit rate and signal-to-noise ratio,particularly for small particles.Herein,an efficient and simple method for designing ADLs and a new ADL specifically designed for SPI using this method are presented.A new method is proposed based on the functional relationship between a key parameter and its influencing parameters in the ADL,which is established through theoretical analysis and numerical simulations.A detailed design process for the new ADL is also introduced.Both simulations and experiments are performed to characterize the behavior of the particles in the ADL.The results show that particles with diameters ranging from 30 to 500 nm can be effectively focused into a narrow beam.In particular,particles smaller than 100 nm exhibit better performance at lower flow rates than the injector currently used in SPI.The new ADL increases the beam density and reduces the gas background noise.This new method facilitates the design of ADLs for SPI and has potential applications in other fields that utilize focused aerosol beams.
基金supported by the National Key R&D Program of China(No.2022YFF0608303)the National Major Scientific Research Instrument Development Project(No.11927805)+4 种基金the NSFC Young Scientists Fund(No.12005134)the Shanghai-XFEL Beamline Project(SBP)(No.31011505505885920161A2101001)the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)the Open Fund of the Key Laboratory for Particle Astrophysics and CosmologyMinistry of Education of China。
文摘In the exploration of celestial bodies,such as Mars,the Moon,and asteroids,X-ray fluorescence analysis has emerged as a critical tool for elemental analysis.However,the varying selection rules and excitation sources introduce complexity.Specifically,these discrepancies can cause variations in the intensities of the characteristic spectral lines emitted by identical elements.These variations,compounded by the minimal energy spacing between these spectral lines,pose substantial challenges for conventional silicon drift detectors(SDD),hindering their ability to accurately differentiate these lines and provide detailed insights into the material structure.To overcome this challenge,a cryogenic X-ray spectrometer based on transition-edge sensor(TES)detector arrays is required to achieve precise measurements.This study measured and analyzed the K-edge characteristic lines of copper and the diverse L-edge characteristic lines of tungsten using a comparative analysis of the electron and X-ray excitation processes.For the electron excitation experiments,copper and tungsten targets were employed as X-ray sources,as they emit distinctive X-ray spectra upon electron-beam bombardment.In the photon excitation experiments,a molybdenum target was used to produce a continuous spectrum with the prominent Mo Kαlines to emit pure copper and tungsten samples.TES detectors were used for the comparative spectroscopic analysis.The initial comparison revealed no substantial differences in the Kαand Kβlines of copper across different excitation sources.Similarly,the Lαlines of tungsten exhibited uniformity under different excitation sources.However,this investigation revealed pronounced differences within the Lβline series.The study found that XRF spectra preferentially excite outer-shell electrons,in contrast to intrinsic spectra,owing to different photon and electron interaction mechanisms.Photon interactions are selection-ruledependent and involve a single electron,whereas electron interactions can involve multiple electrons without such limitations.This leads to varied excitation transitions,as evidenced in the observed Lβline series.
基金supported by“2020 Special Fund for Key Technology and Equipment Development of Major Science and Technology Infrastructure”from the Development and Reform Commission of Shenzhensupport from National Natural Science Foundation of China(Grant No.52103365)Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2021ZT09L227).
文摘Operando X-ray diffraction(XRD)is an important characterization tool for real-time monitoring of structural changes in materials under different reaction conditions.In this study,we developed a laboratory-based diffractometer that could capture a full XRD spectrum within 10 s.The instrument has several advanced features.First,it uses a Ga–In alloy metal-jet X-ray source,thereby achieving high X-ray flux with a brightness of up to 3.0×10^(10) photons/(s·mm^(2)·mrad2).Second,it employs an ellipsoidal mirror with a multilayer coating to produce quasi-parallel monochromatic light characterized by a divergence of 0.6 mrad and an energy resolution of 5.9×10^(−3).Third,it is equipped with a high-efficiency,high-signal-to-noise-ratio Pilatus 3R 1M detector for collecting diffraction signals.These features make the developed instrument applicable in studying rapid phase transitions in lithium-ion batteries,especially under extremely fast charge–discharge conditions.The data quality was comparable to that of synchrotron radiation XRD.