To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.T...To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.展开更多
作为光学与纳米技术交叉融合的前沿学科,微纳光学利用微纳结构的尺寸效应和材料特性,实现对光场偏振、相位、时空分布等维度的精确调控,推动光学系统向微型化和智能化革新,展现出巨大的应用潜力。微纳光学系统设计方法多样,其中全波仿...作为光学与纳米技术交叉融合的前沿学科,微纳光学利用微纳结构的尺寸效应和材料特性,实现对光场偏振、相位、时空分布等维度的精确调控,推动光学系统向微型化和智能化革新,展现出巨大的应用潜力。微纳光学系统设计方法多样,其中全波仿真计算精度高,但通常需要迭代优化而产生数据过剩并消耗大量计算资源和时间。而有效介质理论(Effective Medium Theory,EMT)通过合理地简化物理模型,能显著提高特定参数的计算与分析效率,是一种连接宏观与介观尺度的简化方法。凭借其等效思想和直观的物理图像,在凝聚态物理、地球物理、声学等多个领域广泛应用。在微纳光学中,EMT同样发挥着重要作用,其可用于获取和分析光学系统的等效电磁参数,指导微纳光学系统的设计。文中以等效思想为主导,梳理了经典EMT的基本原理与发展,又在各向异性介质和超越准静态近似等方面作了进一步讨论,并与相关理论进行了对比。在此基础上,重点综述了EMT在微纳光学中多个重要研究方向的应用进展,包括热导与热辐射参量研究、光谱分析、波导设计以及人工电磁材料研究;并总结了为适应微纳光学需求而对经典EMT理论的拓展及新方法的提出。展开更多
基金supported by the Quantum Science and Technology-National Science and Technology Major Project (Grant No.2024ZD0302502 for WZ)the National Natural Science Foundation of China(Grant No.92365210 for WZ)+1 种基金Tsinghua Initiative Scientific Research Program (for WZ)the project of Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies (JIAOT,for YH)。
文摘To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.
文摘作为光学与纳米技术交叉融合的前沿学科,微纳光学利用微纳结构的尺寸效应和材料特性,实现对光场偏振、相位、时空分布等维度的精确调控,推动光学系统向微型化和智能化革新,展现出巨大的应用潜力。微纳光学系统设计方法多样,其中全波仿真计算精度高,但通常需要迭代优化而产生数据过剩并消耗大量计算资源和时间。而有效介质理论(Effective Medium Theory,EMT)通过合理地简化物理模型,能显著提高特定参数的计算与分析效率,是一种连接宏观与介观尺度的简化方法。凭借其等效思想和直观的物理图像,在凝聚态物理、地球物理、声学等多个领域广泛应用。在微纳光学中,EMT同样发挥着重要作用,其可用于获取和分析光学系统的等效电磁参数,指导微纳光学系统的设计。文中以等效思想为主导,梳理了经典EMT的基本原理与发展,又在各向异性介质和超越准静态近似等方面作了进一步讨论,并与相关理论进行了对比。在此基础上,重点综述了EMT在微纳光学中多个重要研究方向的应用进展,包括热导与热辐射参量研究、光谱分析、波导设计以及人工电磁材料研究;并总结了为适应微纳光学需求而对经典EMT理论的拓展及新方法的提出。