金属结构在冲击载荷作用下,最终的变形方向与加载的方向相反,这一现象被称为反直观行为,试验发现背爆面柔性聚脲防护混凝土靶板在75 g TNT爆炸荷载下也发生了反直观行为。为了研究背爆面柔性聚脲防护混凝土靶板在爆炸荷载下的反直观行为...金属结构在冲击载荷作用下,最终的变形方向与加载的方向相反,这一现象被称为反直观行为,试验发现背爆面柔性聚脲防护混凝土靶板在75 g TNT爆炸荷载下也发生了反直观行为。为了研究背爆面柔性聚脲防护混凝土靶板在爆炸荷载下的反直观行为,采用ANSYS/LSDYNA有限元软件,建立了背爆面柔性聚脲防护混凝土靶板在爆炸荷载作用下的有限元模型。利用有限元模型分析背爆面柔性聚脲防护混凝土靶板的动态响应规律,从能量的角度研究靶板反直观行为的发生机理。以靶板的中心点位移和挠度为指标,参数化分析了炸药药量和聚脲涂层厚度对靶板反直观行为的影响规律。结果表明:靶板的反直观行为是由聚脲涂层的应变能释放、混凝土损伤破坏的能量耗散及两种材料间能量的相互转化这三种因素共同作用导致的;炸药药量是反直观行为能否发生的关键因素,当药量较低或较高时,靶板都无法发生反直观行为;涂层厚度在2~8 mm范围内,靶板均出现了反直观行为,其弯曲程度随着涂层厚度的增加先增大后减小。展开更多
In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommend...In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommended to determine the blast load on the structures via numerical simulation. Since the mesh size of the numerical model highly depends on the explosion scenario, there is no generally applicable approach for the mesh size selection. An efficient method to determine the mesh size of the numerical model of near-ground detonation based on explosion scenarios is proposed in this study. The effect of mesh size on the propagation of blast wave under different explosive weights was studied, and the correlations between the mesh size effect and the charge weight or the scaled distance was described. Based on the principle of the finite element method and Hopkinson-Cranz scaling law, a mesh size measurement unit related to the explosive weight was proposed as the criterion for determining the mesh size in the numerical simulation. Finally, the applicability of the method proposed in this paper was verified by comparing the results from numerical simulation and the explosion tests and was verified in AUTODYN.展开更多
文摘金属结构在冲击载荷作用下,最终的变形方向与加载的方向相反,这一现象被称为反直观行为,试验发现背爆面柔性聚脲防护混凝土靶板在75 g TNT爆炸荷载下也发生了反直观行为。为了研究背爆面柔性聚脲防护混凝土靶板在爆炸荷载下的反直观行为,采用ANSYS/LSDYNA有限元软件,建立了背爆面柔性聚脲防护混凝土靶板在爆炸荷载作用下的有限元模型。利用有限元模型分析背爆面柔性聚脲防护混凝土靶板的动态响应规律,从能量的角度研究靶板反直观行为的发生机理。以靶板的中心点位移和挠度为指标,参数化分析了炸药药量和聚脲涂层厚度对靶板反直观行为的影响规律。结果表明:靶板的反直观行为是由聚脲涂层的应变能释放、混凝土损伤破坏的能量耗散及两种材料间能量的相互转化这三种因素共同作用导致的;炸药药量是反直观行为能否发生的关键因素,当药量较低或较高时,靶板都无法发生反直观行为;涂层厚度在2~8 mm范围内,靶板均出现了反直观行为,其弯曲程度随着涂层厚度的增加先增大后减小。
基金the funding supports of the National Key Research and Development Plan,China(Grant No.2022YFC3801800)National Natural Science Foundation of China(Grant Nos.52038010 and 52078368)。
文摘In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommended to determine the blast load on the structures via numerical simulation. Since the mesh size of the numerical model highly depends on the explosion scenario, there is no generally applicable approach for the mesh size selection. An efficient method to determine the mesh size of the numerical model of near-ground detonation based on explosion scenarios is proposed in this study. The effect of mesh size on the propagation of blast wave under different explosive weights was studied, and the correlations between the mesh size effect and the charge weight or the scaled distance was described. Based on the principle of the finite element method and Hopkinson-Cranz scaling law, a mesh size measurement unit related to the explosive weight was proposed as the criterion for determining the mesh size in the numerical simulation. Finally, the applicability of the method proposed in this paper was verified by comparing the results from numerical simulation and the explosion tests and was verified in AUTODYN.