This work investigates thermal enhancement in fluid flow over a nonlinear stretching sheet.The thickness of the sheet is variable and the flow of the fluid is affected by solar radiation energy with Thompson and Troia...This work investigates thermal enhancement in fluid flow over a nonlinear stretching sheet.The thickness of the sheet is variable and the flow of the fluid is affected by solar radiation energy with Thompson and Troian slip effects.The flow is magnetized by applying a magnetic field in the normal direction to the flow system.Moreover,thermal transport is controlled by incorporating the Cattaneo-Christov heat fluid model into the flow problem.The governing equations,initially framed in their dimensional form,are meticulously transformed into a dimensionless framework to simplify the analysis.These dimensionless equations are then solved using the homotopy analysis method(HAM).It is observed in this study that upsurges in the stagnation parameter,critical shear rate and velocity slip factor augment the velocity distribution while reducing the thermal profiles.The velocity distribution deteriorates while the thermal profiles are amplified with expansions in the magnetic factor and power law index.The thermal distribution also increases with rising Prandtl number and radiation factor.Augmentation of the power-law index,velocity slip parameter,critical shear rate,magnetic factor and stagnation parameter leads to an increased Nusselt number.The modeled problem is validated by comparing the current results with established work for different values of nonlinear stretching factor n in terms of the drag force and thermal flow rate at η=0,and a good agreement is observed between the current and established results.展开更多
剪切稀化是重要的一类广义牛顿流体行为,在生物医药、食品化工等领域已有广泛应用。剪切稀化流体激励下的单圆柱单自由度涡激振动已有诸多研究,但鲜有涉及剪切稀化流体作用下两自由度圆柱涡激振动现象。该文选用Carreau-Yasuda本构模型...剪切稀化是重要的一类广义牛顿流体行为,在生物医药、食品化工等领域已有广泛应用。剪切稀化流体激励下的单圆柱单自由度涡激振动已有诸多研究,但鲜有涉及剪切稀化流体作用下两自由度圆柱涡激振动现象。该文选用Carreau-Yasuda本构模型,运用边线型光滑有限元法(Edge-based Smoothed Finite Element Method,ES-FEM)研究剪切稀化行为对单圆柱两自由度涡激振动特性的影响。研究发现:低时间常数下,随着折合流速U_r增加,剪切稀化流体中的圆柱振荡将加快趋于稳定,但随时间常数增加,加速效应减弱。在不同时间常数下,圆柱质心均呈经典“8”字型自限振荡,且高时间常数下轨迹杂乱。在U_r=6条件下,对两自由度下不同时间常数的圆柱尾涡模式进行模拟,模拟结果显示:0.8≤Cu≤80时捕捉到2S尾涡;80≤Cu≤160范围内则为2P模式。在不同时间常数区间释放流向自由度后发现,不同时间常数下,流体对剪切速率变化敏感性不同,高时间常数区间内流向自由度对尾流区黏度场有明显扰动。该研究结果将为广义牛顿流体作用下的钝体振动抑制及能量收集提供借鉴。展开更多
基金supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2025/R/1446)。
文摘This work investigates thermal enhancement in fluid flow over a nonlinear stretching sheet.The thickness of the sheet is variable and the flow of the fluid is affected by solar radiation energy with Thompson and Troian slip effects.The flow is magnetized by applying a magnetic field in the normal direction to the flow system.Moreover,thermal transport is controlled by incorporating the Cattaneo-Christov heat fluid model into the flow problem.The governing equations,initially framed in their dimensional form,are meticulously transformed into a dimensionless framework to simplify the analysis.These dimensionless equations are then solved using the homotopy analysis method(HAM).It is observed in this study that upsurges in the stagnation parameter,critical shear rate and velocity slip factor augment the velocity distribution while reducing the thermal profiles.The velocity distribution deteriorates while the thermal profiles are amplified with expansions in the magnetic factor and power law index.The thermal distribution also increases with rising Prandtl number and radiation factor.Augmentation of the power-law index,velocity slip parameter,critical shear rate,magnetic factor and stagnation parameter leads to an increased Nusselt number.The modeled problem is validated by comparing the current results with established work for different values of nonlinear stretching factor n in terms of the drag force and thermal flow rate at η=0,and a good agreement is observed between the current and established results.
文摘剪切稀化是重要的一类广义牛顿流体行为,在生物医药、食品化工等领域已有广泛应用。剪切稀化流体激励下的单圆柱单自由度涡激振动已有诸多研究,但鲜有涉及剪切稀化流体作用下两自由度圆柱涡激振动现象。该文选用Carreau-Yasuda本构模型,运用边线型光滑有限元法(Edge-based Smoothed Finite Element Method,ES-FEM)研究剪切稀化行为对单圆柱两自由度涡激振动特性的影响。研究发现:低时间常数下,随着折合流速U_r增加,剪切稀化流体中的圆柱振荡将加快趋于稳定,但随时间常数增加,加速效应减弱。在不同时间常数下,圆柱质心均呈经典“8”字型自限振荡,且高时间常数下轨迹杂乱。在U_r=6条件下,对两自由度下不同时间常数的圆柱尾涡模式进行模拟,模拟结果显示:0.8≤Cu≤80时捕捉到2S尾涡;80≤Cu≤160范围内则为2P模式。在不同时间常数区间释放流向自由度后发现,不同时间常数下,流体对剪切速率变化敏感性不同,高时间常数区间内流向自由度对尾流区黏度场有明显扰动。该研究结果将为广义牛顿流体作用下的钝体振动抑制及能量收集提供借鉴。