The proposed mass model of vocal fold vibration holds a significant importance in the auxiliary diagnosis and treatment of human vocal fold disorders.Mathematical models are proposed in aerodynamics and acoustics to s...The proposed mass model of vocal fold vibration holds a significant importance in the auxiliary diagnosis and treatment of human vocal fold disorders.Mathematical models are proposed in aerodynamics and acoustics to simulate vocal fold vibration during phonation.This has always been a hot topic in pathological linguistics research.Over the past few decades,researchers have designed various types of mass models of vocal fold vibration based on experiments.These models differ in principles,computational complexity,and degrees of freedom.Therefore,we classify and describe the mass models according to modeling methods.We summarize the research status and characteristics of different models,and based on this,we look forward to future research directions for vocal fold mass models.展开更多
Conventional liquid crystal elastomer(LCE)-based robots are limited by the need for complex controllers and bulky power supplies,restricting their use in microrobots and soft robots.This paper introduces a novel light...Conventional liquid crystal elastomer(LCE)-based robots are limited by the need for complex controllers and bulky power supplies,restricting their use in microrobots and soft robots.This paper introduces a novel light-powered dicycle that uses an LCE rod,enabling self-rolling by harvesting energy from the environment.The LCE rod serves as the driving force,with energy being supplied by a line light source.Employing a dynamic LCE model,we calculate the transverse curvature of the LCE rod after deformation,as well as the driving moment generated by the shift in a rod’s center of gravity,which allows the dicycle to roll on its own.Through extensive numerical simulations,we identify the correlations between the angular velocity of the dicycle and the key system parameters,specifically the light intensity,LCE rod length,light penetration depth,overall mass of the dicycle,rolling friction coefficient,and wheel radius.Further,the experimental verification is the same as the theoretical result.This proposed light-powered self-rolling dicycle comes with the benefits of the simple structure,the convenient control,the stationary light source,and the small luminous area of the light source.It not only demonstrates self-sustaining oscillations based on active materials,but also highlights the great potential of light-responsive LCE rods in applications such as robotics,aerospace,healthcare,and automation.展开更多
提出一种用于求解任意边界条件下带有任意集中质量的连续多跨梁的自振特性的方法。求解过程为:运用改进的傅里叶级数法(Improved Fourier Series Method,IFSM)确定梁的位移形函数,通过Rayleigh-Ritz法得到梁的拉格朗日方程,然后利用Hami...提出一种用于求解任意边界条件下带有任意集中质量的连续多跨梁的自振特性的方法。求解过程为:运用改进的傅里叶级数法(Improved Fourier Series Method,IFSM)确定梁的位移形函数,通过Rayleigh-Ritz法得到梁的拉格朗日方程,然后利用Hamilton原理得到频率特征矩阵,通过求解广义特征值求得自振频率及位移振型。随后,对所提出的方法的收敛性和精度进行讨论,与现有文献中的方法对比,该方法具有计算精度较高、收敛性好、收敛速度快等特点。讨论不同边界条件下截断数、跨数以及频率阶数之间的关系。最后通过工程中的实际案例说明该方法的实用性,与现有文献对比可知,其精度可达99.9%以上,由此验证了该方法的可靠性以及适用性。该方法易于通过编程实现快速计算,可为工程运用提供便捷有效的理论支撑。展开更多
基金the Shanghai Educational Sciences Research Program(No.C2021016)。
文摘The proposed mass model of vocal fold vibration holds a significant importance in the auxiliary diagnosis and treatment of human vocal fold disorders.Mathematical models are proposed in aerodynamics and acoustics to simulate vocal fold vibration during phonation.This has always been a hot topic in pathological linguistics research.Over the past few decades,researchers have designed various types of mass models of vocal fold vibration based on experiments.These models differ in principles,computational complexity,and degrees of freedom.Therefore,we classify and describe the mass models according to modeling methods.We summarize the research status and characteristics of different models,and based on this,we look forward to future research directions for vocal fold mass models.
基金supported by the National Natural Science Foundation of China(No.12172001)the University Natural Science Research Project of Anhui Province of China(No.2022AH020029)+1 种基金the Anhui Provincial Natural Science Foundation(Nos.2208085Y01 and 2008085QA23)the Housing and Urban-Rural Development Science and Technology Project of Anhui Province of China(No.2023-YF129)。
文摘Conventional liquid crystal elastomer(LCE)-based robots are limited by the need for complex controllers and bulky power supplies,restricting their use in microrobots and soft robots.This paper introduces a novel light-powered dicycle that uses an LCE rod,enabling self-rolling by harvesting energy from the environment.The LCE rod serves as the driving force,with energy being supplied by a line light source.Employing a dynamic LCE model,we calculate the transverse curvature of the LCE rod after deformation,as well as the driving moment generated by the shift in a rod’s center of gravity,which allows the dicycle to roll on its own.Through extensive numerical simulations,we identify the correlations between the angular velocity of the dicycle and the key system parameters,specifically the light intensity,LCE rod length,light penetration depth,overall mass of the dicycle,rolling friction coefficient,and wheel radius.Further,the experimental verification is the same as the theoretical result.This proposed light-powered self-rolling dicycle comes with the benefits of the simple structure,the convenient control,the stationary light source,and the small luminous area of the light source.It not only demonstrates self-sustaining oscillations based on active materials,but also highlights the great potential of light-responsive LCE rods in applications such as robotics,aerospace,healthcare,and automation.
文摘提出一种用于求解任意边界条件下带有任意集中质量的连续多跨梁的自振特性的方法。求解过程为:运用改进的傅里叶级数法(Improved Fourier Series Method,IFSM)确定梁的位移形函数,通过Rayleigh-Ritz法得到梁的拉格朗日方程,然后利用Hamilton原理得到频率特征矩阵,通过求解广义特征值求得自振频率及位移振型。随后,对所提出的方法的收敛性和精度进行讨论,与现有文献中的方法对比,该方法具有计算精度较高、收敛性好、收敛速度快等特点。讨论不同边界条件下截断数、跨数以及频率阶数之间的关系。最后通过工程中的实际案例说明该方法的实用性,与现有文献对比可知,其精度可达99.9%以上,由此验证了该方法的可靠性以及适用性。该方法易于通过编程实现快速计算,可为工程运用提供便捷有效的理论支撑。