本文为Stokes-Cahn-Hilliard相场模型开发了一种具有二阶时间精度的时间并行解耦算法,在时间上基于谱延迟校正方法和时间并行Parareal算法。此外,我们使用稳定化方法处理Cahn-Hilliard方程,运用了压力投影方法处理Stokes方程中压力p和速...本文为Stokes-Cahn-Hilliard相场模型开发了一种具有二阶时间精度的时间并行解耦算法,在时间上基于谱延迟校正方法和时间并行Parareal算法。此外,我们使用稳定化方法处理Cahn-Hilliard方程,运用了压力投影方法处理Stokes方程中压力p和速度u的耦合。相较于解耦的方案,进一步提高了算法的计算效率。最后,通过数值实验证明了它的稳定性和高效性。In this paper, we develop a time-parallel decoupled algorithm with second-order temporal accuracy for the Stokes-Cahn-Hilliard phase-field model, based in time on the spectral-deferred correction method and the time-parallel Parareal algorithm. In addition, we use a stabilisation method for the Cahn-Hilliard equation and employ a pressure projection method for the coupling of pressure p and velocity u in the Stokes equation. Compared with the decoupled scheme, the computational efficiency of the algorithm is further improved. Finally, numerical experiments demonstrate its stability and efficiency.展开更多
文摘本文为Stokes-Cahn-Hilliard相场模型开发了一种具有二阶时间精度的时间并行解耦算法,在时间上基于谱延迟校正方法和时间并行Parareal算法。此外,我们使用稳定化方法处理Cahn-Hilliard方程,运用了压力投影方法处理Stokes方程中压力p和速度u的耦合。相较于解耦的方案,进一步提高了算法的计算效率。最后,通过数值实验证明了它的稳定性和高效性。In this paper, we develop a time-parallel decoupled algorithm with second-order temporal accuracy for the Stokes-Cahn-Hilliard phase-field model, based in time on the spectral-deferred correction method and the time-parallel Parareal algorithm. In addition, we use a stabilisation method for the Cahn-Hilliard equation and employ a pressure projection method for the coupling of pressure p and velocity u in the Stokes equation. Compared with the decoupled scheme, the computational efficiency of the algorithm is further improved. Finally, numerical experiments demonstrate its stability and efficiency.