Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the m...Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the main contributions is proving this property using linear algebra instead of profound knowledge.This makes it easy to read and understand this fundamental fact.The proof of linear independence of a set of Gauss functions relies on the constructing method for one-dimensional space and on the deducing method for higher dimensions.Additionally,under the condition of preserving the same moments between the original function and interpolating function,both the interpolating existence and uniqueness are proven for GRBF in one-dimensional space.The final work demonstrates the application of the GRBF method to locate lunar olivine.By combining preprocessed data using GRBF with the removing envelope curve method,a program is created to find the position of lunar olivine based on spectrum data,and the numerical experiment shows that it is an effective scheme.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
基金Supported by the National Basic Research Program of China(2012CB025904)Zhengzhou Shengda University of Economics,Business and Management(SD-YB2025085)。
文摘Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the main contributions is proving this property using linear algebra instead of profound knowledge.This makes it easy to read and understand this fundamental fact.The proof of linear independence of a set of Gauss functions relies on the constructing method for one-dimensional space and on the deducing method for higher dimensions.Additionally,under the condition of preserving the same moments between the original function and interpolating function,both the interpolating existence and uniqueness are proven for GRBF in one-dimensional space.The final work demonstrates the application of the GRBF method to locate lunar olivine.By combining preprocessed data using GRBF with the removing envelope curve method,a program is created to find the position of lunar olivine based on spectrum data,and the numerical experiment shows that it is an effective scheme.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.