The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic fu...The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.展开更多
Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_...Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).展开更多
Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference...Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.展开更多
In this paper,we introduce a new geometric constant R_(X)(κ)based on isosceles orthogonality.First,we explore some basic properties of this new constant and then provide several examples to estimate its exact values ...In this paper,we introduce a new geometric constant R_(X)(κ)based on isosceles orthogonality.First,we explore some basic properties of this new constant and then provide several examples to estimate its exact values in certain specific Banach spaces.Next,we investigate the relationships between this new constant and other classical constants.Specifically,we establish an inequality relationship between it and the J(X)constant,as well as an identity relationship between it and theρX(t)constant.Furthermore,we characterize some geometric properties of Banach spaces by means of this new constant.Finally,by restricting the above-mentioned constant to the unit sphere,we introduce another new constant,calculate its upper and lower bounds,and present a relevant example.展开更多
We propose the Dantzig selector based on the l_(1-q)(1<q≤2)minimization model for the sparse signal recovery.First,we discuss some properties of l_(1-q)minimization model and give some useful inequalities.Then,we ...We propose the Dantzig selector based on the l_(1-q)(1<q≤2)minimization model for the sparse signal recovery.First,we discuss some properties of l_(1-q)minimization model and give some useful inequalities.Then,we give a sufficient condition based on the restricted isometry property for the stable recovery of signals.The l_(1-2)minimization model of Yin-Lou-He is extended to the l_(1-q)minimization model.展开更多
This paper addresses the evolution problem governed by the fractional sweeping process with prox-regular nonconvex constraints.The values of the moving set are time and state-dependent.The aim is to illustrate how a f...This paper addresses the evolution problem governed by the fractional sweeping process with prox-regular nonconvex constraints.The values of the moving set are time and state-dependent.The aim is to illustrate how a fixed point method can establish an existence theorem for this fractional nonlinear evolution problem.By combining Schauder’s fixed point theorem with a well-posedness theorem when the set C is independent of the state u(i.e.C:=C(t),as presented in[22,23]),we prove the existence of a solution to our quasi-variational fractional sweeping process in infinite-dimensional Hilbert spaces.Similar to the conventional state-dependent sweeping process,achieving this result requires a condition on the size of the Lipschitz constant of the moving set relative to the state.展开更多
基金Supported by Natural Science Foundation of Guangdong Province in China(2018KTSCX161)。
文摘The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.
文摘Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).
基金supported by National Science Foundations of China(Grant No.11771340,12171373).
文摘Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.
基金Supported by the Higher Education Science Research Project(Natural Science)of Anhui Province(Grant No.2023AH050487)。
文摘In this paper,we introduce a new geometric constant R_(X)(κ)based on isosceles orthogonality.First,we explore some basic properties of this new constant and then provide several examples to estimate its exact values in certain specific Banach spaces.Next,we investigate the relationships between this new constant and other classical constants.Specifically,we establish an inequality relationship between it and the J(X)constant,as well as an identity relationship between it and theρX(t)constant.Furthermore,we characterize some geometric properties of Banach spaces by means of this new constant.Finally,by restricting the above-mentioned constant to the unit sphere,we introduce another new constant,calculate its upper and lower bounds,and present a relevant example.
基金supported by the National Natural Science Foundation of China“Variable exponential function spaces on variable anisotropic Euclidean spaces and their applications”(12261083),“Harmonic analysis on affine symmetric spaces”(12161083).
文摘We propose the Dantzig selector based on the l_(1-q)(1<q≤2)minimization model for the sparse signal recovery.First,we discuss some properties of l_(1-q)minimization model and give some useful inequalities.Then,we give a sufficient condition based on the restricted isometry property for the stable recovery of signals.The l_(1-2)minimization model of Yin-Lou-He is extended to the l_(1-q)minimization model.
基金supported by the Natural Science Foundation of Guangxi(2021GXNSFFA196004,2024GXNSFBA010337)the NNSF of China(12371312)+1 种基金the Natural Science Foundation of Chongqing(CSTB2024NSCQ-JQX0033)supported by the project cooperation between Guangxi Normal University and Yulin Normal University.
文摘This paper addresses the evolution problem governed by the fractional sweeping process with prox-regular nonconvex constraints.The values of the moving set are time and state-dependent.The aim is to illustrate how a fixed point method can establish an existence theorem for this fractional nonlinear evolution problem.By combining Schauder’s fixed point theorem with a well-posedness theorem when the set C is independent of the state u(i.e.C:=C(t),as presented in[22,23]),we prove the existence of a solution to our quasi-variational fractional sweeping process in infinite-dimensional Hilbert spaces.Similar to the conventional state-dependent sweeping process,achieving this result requires a condition on the size of the Lipschitz constant of the moving set relative to the state.