This paper is concerned with the following nonlinear difference equation:x_(n+1)=sum from i=1 to l A_(s_i)x_(n-s_i)/B+C multiply from j=1 to k x_(n-t_j) +D_x_n,n=0,1,…(1.1).The more simple suffcient conditions of asy...This paper is concerned with the following nonlinear difference equation:x_(n+1)=sum from i=1 to l A_(s_i)x_(n-s_i)/B+C multiply from j=1 to k x_(n-t_j) +D_x_n,n=0,1,…(1.1).The more simple suffcient conditions of asymptotic stability are obtained by using a smart technique,which extends and includes partially corresponding results obtained in the references [6-9].The global behavior of the solutions is investigated.In addition,in order to support analytic results,some numerical simulations to the special equations are presented.展开更多
基金Supported by the Science and Technology Project of Chongqing Municiple Education Commission(KJ110501)Supported by the Research Initiation Project for High-level Talents of North China University of Water Resources and Electric Power(201035)Supported by the NSF of the Hebei Higher Education Institutions(Z2011111)
文摘This paper is concerned with the following nonlinear difference equation:x_(n+1)=sum from i=1 to l A_(s_i)x_(n-s_i)/B+C multiply from j=1 to k x_(n-t_j) +D_x_n,n=0,1,…(1.1).The more simple suffcient conditions of asymptotic stability are obtained by using a smart technique,which extends and includes partially corresponding results obtained in the references [6-9].The global behavior of the solutions is investigated.In addition,in order to support analytic results,some numerical simulations to the special equations are presented.