It is proved that if M^n is an n-dimensional complete submanifold with parallel mean curvature vector and flat normal bundle in S^n+p(1), and if supM S 〈 α(n, H), where α(n,H)=n+n^3/2(n-1)H^2-n(n-2)/n(...It is proved that if M^n is an n-dimensional complete submanifold with parallel mean curvature vector and flat normal bundle in S^n+p(1), and if supM S 〈 α(n, H), where α(n,H)=n+n^3/2(n-1)H^2-n(n-2)/n(n-1)√n^2H^4+4(n-1)H^2,then M^n must be the totally urnbilical sphere S^n(1/√1+H^2).An example to show that the pinching constant α(n, H) appears optimal is given.展开更多
Let K (?) Rn be a convex body of volume 1 whose barycenter is at the origin, LK be the isotropic constant of K. Finding the least upper bound of LK , being called Bourgain's problem, is a well known open problem i...Let K (?) Rn be a convex body of volume 1 whose barycenter is at the origin, LK be the isotropic constant of K. Finding the least upper bound of LK , being called Bourgain's problem, is a well known open problem in the local theory of Banach space. The best estimate known today is LK < cn1/4 log n, recently shown by Bourgain, for an arbitrary convex body in any finite dimension. Utilizing the method of spherical section function, it is proven that if K is a convex body with volume 1 and r1Bn2 (?) K (?) r2Bn2,(r1≥1/2, r2≤(?)/2), then (?) ≤ (?) and find the conditions with equality. Further, the geometric characteristic of isotropic bodies is shown.展开更多
基金Research supported by the National Natural Science Foundation of China(10771187)Trans-Century Training Programme Foundation for Talents by the Ministry of Education of China.
文摘It is proved that if M^n is an n-dimensional complete submanifold with parallel mean curvature vector and flat normal bundle in S^n+p(1), and if supM S 〈 α(n, H), where α(n,H)=n+n^3/2(n-1)H^2-n(n-2)/n(n-1)√n^2H^4+4(n-1)H^2,then M^n must be the totally urnbilical sphere S^n(1/√1+H^2).An example to show that the pinching constant α(n, H) appears optimal is given.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10271071).
文摘Let K (?) Rn be a convex body of volume 1 whose barycenter is at the origin, LK be the isotropic constant of K. Finding the least upper bound of LK , being called Bourgain's problem, is a well known open problem in the local theory of Banach space. The best estimate known today is LK < cn1/4 log n, recently shown by Bourgain, for an arbitrary convex body in any finite dimension. Utilizing the method of spherical section function, it is proven that if K is a convex body with volume 1 and r1Bn2 (?) K (?) r2Bn2,(r1≥1/2, r2≤(?)/2), then (?) ≤ (?) and find the conditions with equality. Further, the geometric characteristic of isotropic bodies is shown.