Let D be a diagraph of order n≥9 and δ≥n-2. If for every pairof vertices u, v∈V(D) , either uv∈ A(D) or . Theauthor has proved D is pancyclic before. In this paper we suppose n≥6 in-stead of n≥9 in above condit...Let D be a diagraph of order n≥9 and δ≥n-2. If for every pairof vertices u, v∈V(D) , either uv∈ A(D) or . Theauthor has proved D is pancyclic before. In this paper we suppose n≥6 in-stead of n≥9 in above condition, and show the same result holds except 6s展开更多
文摘Let D be a diagraph of order n≥9 and δ≥n-2. If for every pairof vertices u, v∈V(D) , either uv∈ A(D) or . Theauthor has proved D is pancyclic before. In this paper we suppose n≥6 in-stead of n≥9 in above condition, and show the same result holds except 6s