Big data has ushered in an era of unprecedented access to vast amounts of new,unstructured data,particularly in the realm of sensitive information.It presents unique opportunities for enhancing risk alerting systems,b...Big data has ushered in an era of unprecedented access to vast amounts of new,unstructured data,particularly in the realm of sensitive information.It presents unique opportunities for enhancing risk alerting systems,but also poses challenges in terms of extraction and analysis due to its diverse file formats.This paper proposes the utilization of a DAE-based(Deep Auto-encoders)model for projecting risk associated with financial data.The research delves into the development of an indicator assessing the degree to which organizations successfully avoid displaying bias in handling financial information.Simulation results demonstrate the superior performance of the DAE algorithm,showcasing fewer false positives,improved overall detection rates,and a noteworthy 9%reduction in failure jitter.The optimized DAE algorithm achieves an accuracy of 99%,surpassing existing methods,thereby presenting a robust solution for sensitive data risk projection.展开更多
金融稳定需要防范和化解金融市场之间的风险传染。与以往文献只是探究两个市场的风险传染不同,本文利用高维VAR for VaR模型将中国的汇市、债市、大宗商品、金融期货和股市等五个金融市场纳入统一框架,分析这5个金融市场在不同状态的风...金融稳定需要防范和化解金融市场之间的风险传染。与以往文献只是探究两个市场的风险传染不同,本文利用高维VAR for VaR模型将中国的汇市、债市、大宗商品、金融期货和股市等五个金融市场纳入统一框架,分析这5个金融市场在不同状态的风险溢出效应,这有助于捕捉冲击在不同金融市场之间传播而产生的间接影响。Wald检验和后验分析表明5个市场间只在危机或泡沫状态时存在明显的风险溢出效应。同时,本文利用压力测试发现单个市场的短期冲击影响会被其他金融市场如股市消化吸收,但4个金融市场都处于正常状态会明显降低其他金融市场如股市的左尾风险。此外,本文提出利用单个金融市场在同一时点的不同分位数计算每个金融市场在同一时点的预期收益、波动风险和崩盘风险,这种做法的好处在于结果更加稳健以及减轻极端值的影响。在此基础上,本文进一步探究金融市场间是否能够对冲彼此的波动风险和崩盘风险。结果显示大宗商品市场和金融期货市场能够有效地对冲其他金融市场的波动风险和崩盘风险,但汇市、债市和股市无法对冲其他金融市场的波动风险和崩盘风险。展开更多
文摘Big data has ushered in an era of unprecedented access to vast amounts of new,unstructured data,particularly in the realm of sensitive information.It presents unique opportunities for enhancing risk alerting systems,but also poses challenges in terms of extraction and analysis due to its diverse file formats.This paper proposes the utilization of a DAE-based(Deep Auto-encoders)model for projecting risk associated with financial data.The research delves into the development of an indicator assessing the degree to which organizations successfully avoid displaying bias in handling financial information.Simulation results demonstrate the superior performance of the DAE algorithm,showcasing fewer false positives,improved overall detection rates,and a noteworthy 9%reduction in failure jitter.The optimized DAE algorithm achieves an accuracy of 99%,surpassing existing methods,thereby presenting a robust solution for sensitive data risk projection.
文摘金融稳定需要防范和化解金融市场之间的风险传染。与以往文献只是探究两个市场的风险传染不同,本文利用高维VAR for VaR模型将中国的汇市、债市、大宗商品、金融期货和股市等五个金融市场纳入统一框架,分析这5个金融市场在不同状态的风险溢出效应,这有助于捕捉冲击在不同金融市场之间传播而产生的间接影响。Wald检验和后验分析表明5个市场间只在危机或泡沫状态时存在明显的风险溢出效应。同时,本文利用压力测试发现单个市场的短期冲击影响会被其他金融市场如股市消化吸收,但4个金融市场都处于正常状态会明显降低其他金融市场如股市的左尾风险。此外,本文提出利用单个金融市场在同一时点的不同分位数计算每个金融市场在同一时点的预期收益、波动风险和崩盘风险,这种做法的好处在于结果更加稳健以及减轻极端值的影响。在此基础上,本文进一步探究金融市场间是否能够对冲彼此的波动风险和崩盘风险。结果显示大宗商品市场和金融期货市场能够有效地对冲其他金融市场的波动风险和崩盘风险,但汇市、债市和股市无法对冲其他金融市场的波动风险和崩盘风险。