In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,...In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,existing methods face two major challenges:traditional feature engineering suffers from insufficient effective dimensionality in the feature space due to kinematic coupling,making it difficult to distinguish essential differences between maneuvers,while end-to-end deep learning models lack controllability in implicit feature learning and fail to model high-order long-range temporal dependencies.This paper proposes a trajectory feature pre-extraction method based on a Long-range Masked Autoencoder(LMAE),incorporating three key innovations:(1)Random Fragment High-ratio Masking(RFH-Mask),which enforces the model to learn long-range temporal correlations by masking 80%of trajectory data while retaining continuous fragments;(2)Kalman Filter-Guided Objective Function(KFG-OF),integrating trajectory continuity constraints to align the feature space with kinematic principles;and(3)Two-stage Decoupled Architecture,enabling efficient and controllable feature learning through unsupervised pre-training and frozen-feature transfer.Experimental results demonstrate that LMAE significantly improves the average recognition accuracy for 20-class maneuvers compared to traditional end-to-end models,while significantly accelerating convergence speed.The contributions of this work lie in:introducing high-masking-rate autoencoders into low-informationdensity trajectory analysis,proposing a feature engineering framework with enhanced controllability and efficiency,and providing a novel technical pathway for intelligent air combat decision-making systems.展开更多
Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representati...Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.展开更多
文摘In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,existing methods face two major challenges:traditional feature engineering suffers from insufficient effective dimensionality in the feature space due to kinematic coupling,making it difficult to distinguish essential differences between maneuvers,while end-to-end deep learning models lack controllability in implicit feature learning and fail to model high-order long-range temporal dependencies.This paper proposes a trajectory feature pre-extraction method based on a Long-range Masked Autoencoder(LMAE),incorporating three key innovations:(1)Random Fragment High-ratio Masking(RFH-Mask),which enforces the model to learn long-range temporal correlations by masking 80%of trajectory data while retaining continuous fragments;(2)Kalman Filter-Guided Objective Function(KFG-OF),integrating trajectory continuity constraints to align the feature space with kinematic principles;and(3)Two-stage Decoupled Architecture,enabling efficient and controllable feature learning through unsupervised pre-training and frozen-feature transfer.Experimental results demonstrate that LMAE significantly improves the average recognition accuracy for 20-class maneuvers compared to traditional end-to-end models,while significantly accelerating convergence speed.The contributions of this work lie in:introducing high-masking-rate autoencoders into low-informationdensity trajectory analysis,proposing a feature engineering framework with enhanced controllability and efficiency,and providing a novel technical pathway for intelligent air combat decision-making systems.
文摘Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.