Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up ...Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up table that contains the optical properties of five hydrometeor types—rain,cloud water,cloud ice,graupel,and snow—for the Advanced Radiative Transfer Modeling System(ARMS)at frequencies below 220 GHz.The discrete dipole approximation(DDA)method is employed to compute the single-scattering properties of solid cloud particles,modeling these particles as aggregated roughened bullet rosettes.The bulk optical properties of the cloud layer are derived by integrating the singlescattering properties with a modified Gamma size distribution,specifically for distributions with 18 effective radii.The bulk phase function is then projected onto a series of generalized spherical functions,applying the delta-M method for truncation.The results indicate that simulations using the newly developed nonspherical scattering look-up table exhibit significant consistency with observations under deep convection conditions.In contrast,assuming spherical solid cloud particles leads to excessive scattering at mid-frequency channels and insufficient scattering at high-frequency channels.This improvement in radiative transfer simulation accuracy for cloudy conditions will better support the assimilation of allsky microwave observations into numerical weather prediction models.·Frozen cloud particles were modeled as aggregates of bullet rosettes and the optical properties at microwave range were computed by DDA.·A complete process and technical details for constructing a look-up table of ARMS are provided.·The ARMS simulations generally show agreement with observations of MWTS and MWHS under typhoon conditions using the new look-up table.展开更多
The dielectric loss of carbon materials is closely related to the microstructure and the degree of crystallization,and the microstructure modulation of electromagnetic wave absorbing carbon materials is the key to enh...The dielectric loss of carbon materials is closely related to the microstructure and the degree of crystallization,and the microstructure modulation of electromagnetic wave absorbing carbon materials is the key to enhancing absorption properties.In this work,a porous elastic Co@CNF-PDMS composite was prepared by freeze-drying and confined catalysis.The graphitization degree and conductivity loss of carbon nanofibers(CNFs)were regulated by heat treatment temperature and Co catalyst content.The construction of a heterointerface between Co and C enhances the interfacial polarization loss.The Co@CNF-PDMS composite with 4.5 mm achieves the minimum reflection loss(RLmin)of-81.0 dB at 9.9 GHz and RL no higher than-12.1 dB in the whole of the X-band.After applying a load of up to 40% strain and 100 cycles to Co@CNF-PDMS,the dielectric properties of the composite remain stable.With the increase of compression strain,the distribution density of the absorbent increases,and the CNF sheet layer extrusion contact forms a conductive path,which leads to the conductive loss increase,finally,the absorption band moves to a high frequency.The absorption band can be bi-directionally regulated by loading and strain with good stability,which provides a new strategy for the development of intelligent electromagnetic wave absorbing materials.展开更多
Mitochondria are semi-autonomous organelles present in eukaryotic cells,containing their own genome and transcriptional machinery.However,their functions are intricately linked to proteins encoded by the nuclear genom...Mitochondria are semi-autonomous organelles present in eukaryotic cells,containing their own genome and transcriptional machinery.However,their functions are intricately linked to proteins encoded by the nuclear genome.Mitochondrial transcription termination factors(mTERFs)are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.Despite their recognized importance,the specific roles of mTERF proteins in maize remain largely unexplored.Here,we clone and functionally characterize the maize mTERF18 gene.Our findings reveal that mTERF18 mutations lead to severely undifferentiated embryos,resulting in abortive phenotypes.Early kernel exhibits abnormal basal endosperm transfer layer and a significant reduction in both starch and protein accumulation in mterf18.We identify the mTERF18 gene through mapping-based cloning and validate this gene through allelic tests.mTERF18 is widely expressed across various maize tissues and encodes a highly conserved mitochondrial protein.Transcriptome data reveal that mTERF18 mutations disrupt transcriptional termination of the nad6 gene,leading to undetectable levels of Nad6 protein and reduced complex I assembly and activity.Furthermore,transmission electron microscopy observation of mterf18 endosperm uncover severe mitochondrial defects.Collectively,these findings highlight the critical role of mTERF18 in mitochondrial gene transcription termination and its pivotal impact on maize kernel development.展开更多
The global rise in animal protein consumption has significantly amplified the demand for fodder.A comprehensive understanding of the diversity and characteristics of existing fodder resources is essential for balanced...The global rise in animal protein consumption has significantly amplified the demand for fodder.A comprehensive understanding of the diversity and characteristics of existing fodder resources is essential for balanced nutritional fodder production.This study investigates the diversity and composition of fodder plants and identifies key species for cattle in Zhaotong City,Yunnan,China,while documenting indigenous knowledge on their usage and selection criteria.Ethnobotanical surveys were conducted in 19 villages across seven townships with 140 informants.Data were collected through semi-structured interviews,free listing,and participatory observation,and analyzed using Relative Frequency Citation.A total of 125 taxa(including 106 wild and 19 cultivated)were reported.The most cited family is Poaceae(27 taxa,21.43%),followed by Asteraceae(17 taxa,13.49%),Fabaceae(14 taxa,11.11%),Polygonaceae(9 taxa,7.14%)and Lamiaceae(4 taxa,3.17%).The whole plant(66.04%)and herbaceous plants(84.80%)were the most used parts and life forms.The most cited species were Zea mays,Brassica rapa,Solanum tuberosum,Eragrostis nigra,and Artemisia dubia.Usage of diverse fodder resources reflects local wisdom in managing resource availability and achieving balanced nutrition while coping with environmental and climatic risks.Preferences for certain taxonomic groups are due to their quality as premier fodder resources.To promote integrated crop-livestock farming,we suggest further research into highly preferred fodder species,focusing on nutritional assessment,digestibility,meat quality impacts,and potential as antibiotic alternatives.Establishing germplasm and gene banks for fodder resources is also recommended.展开更多
Eucalyptus urophylla×E.grandis is a major hybrid species of timber plantations.However,our under-standing of Eucalyptus mitochondrial genome,especially within the Myrtaceae family,is limited.In this study,we empl...Eucalyptus urophylla×E.grandis is a major hybrid species of timber plantations.However,our under-standing of Eucalyptus mitochondrial genome,especially within the Myrtaceae family,is limited.In this study,we employed hybrid sequencing combining the Illumina and Oxford Nanopore sequencing to assemble and annotate the mitogenome(mtDNA)of E.urophylla×E.grandis.Our results reveal a structure characterized by one circular mol-ecule,with a cumulative length of 483,907 base pairs(bp)and a GC content of 44.96%.The circular molecule collec-tively harbored 59 annotated genes.Among these,38 were unique protein-coding genes(PCGs),accompanied by 18 transfer RNA(tRNA)genes and 3 ribosomal RNA(rRNA)genes.Our study also examined repetitive sequences,RNA editing sites,and intracellular sequence transfers within the mtDNA.Furthermore,we conducted a phylogenetic analy-sis between E.urophylla×E.grandis and 30 closely related species based on genetic affinities.The outcomes furnish a high-quality organelle genome for E.urophylla×E.grandis,thereby explaining basic insights into organelle genome evo-lution and phylogenetic relationships.展开更多
Early detection of convective clouds is vital for minimizing hazardous impacts.Forecasting convective initiation(CI)using current multispectral geostationary meteorological satellites is often challenged by high false...Early detection of convective clouds is vital for minimizing hazardous impacts.Forecasting convective initiation(CI)using current multispectral geostationary meteorological satellites is often challenged by high false-alarm rates and missed detections caused by limited resolution.In contrast,high-resolution earth observation satellites offer more detailed texture information,improving early detection capabilities.The authors propose a novel methodology that integrates the advanced features of China’s latest-generation satellites,Gaofen-4(GF-4)and Fengyun-4A(FY-4A).This fusion method retains GF’s high-resolution details and FY-4A’s multispectral information.Two cases from different observational scenarios and weather conditions under GF-4’s staring mode were carried out to compare the CI forecast results based on fused data and solely on FY-4A data.The fused data demonstrated superior performance in detecting smaller-scale convective clouds,enabling earlier forecasting with a lead time of 15–30 minutes,and more accurate location identification.Integrating high-resolution earth observation satellites into early convective cloud detection provides valuable insights for forecasters and decision-makers,particularly given the current resolution limitations of geostationary meteorological satellites.展开更多
A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without in...A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory.展开更多
The formation of interphase layers,including the cathode-electrolyte interphase(CEI)and solidelectrolyte interphase(SEI),exhibits significant chemical complexity and plays a pivotal role in determining the performance...The formation of interphase layers,including the cathode-electrolyte interphase(CEI)and solidelectrolyte interphase(SEI),exhibits significant chemical complexity and plays a pivotal role in determining the performance of lithium batteries.Despite considerable advances in simulating the bulk phase properties of battery materials,the understanding of interfaces,including crystalline interfaces that represent the simplest case,remains limited.This is primarily due to challenges in performing ground-state searches for interface microstructures and the high computational costs associated with first-principles methods.Herein,we introduce InterOptimus,an automated workflow designed to efficiently search for ground-state heterogeneous interfaces.InterOptimus incorporates a rigorous,symmetry-aware equivalence analysis for lattice matching and termination scanning.Additionally,it introduces stereographic projection as an intuitive and comprehensive framework for visualizing and classifying interface structures.By integrating universal machine learning interatomic potentials(MLIPs),InterOptimus enables rapid predictions of interface energy and stability,significantly reducing the necessary computational cost in density functional theory(DFT)by over 90%.We benchmarked several MLIPs at three critical lithium battery interfaces,Li_(2)S|Ni_(3)S_(2),LiF|NCM,and Li_(3)PS_(4)|Li,and demonstrated that the MLIPs achieve accuracy comparable to DFT in modeling potential energy surfaces and ranking interface stabilities.Thus,InterOptimus facilitates the efficient determination of ground-state heterogeneous interface structures and subsequent studies of structure-property relationships,accelerating the interface engineering of novel battery materials.展开更多
Common anode materials in aqueous alkaline electrolytes,such as cadmium,metal hydrides and zinc,usually suffer from remarkable biotoxicity,high cost,and serious side reactions.To overcome these problems,we develop a c...Common anode materials in aqueous alkaline electrolytes,such as cadmium,metal hydrides and zinc,usually suffer from remarkable biotoxicity,high cost,and serious side reactions.To overcome these problems,we develop a conjugated porous polymer(CPP)in-situ grown on reduced graphene oxide(rGO)and Ketjen black(KB),noted as C_(4)N/rGO and C_(4)N/KB respectively,as the alternative anodes.The results show that C_(4)N/rGO electrode delivers a low redox potential(−0.905 V vs.Ag/AgCl),high specific capacity(268.8 mAh g^(-1) at 0.2 A g^(-1)),ultra-stable and fast sodium ion storage behavior(216 mAh g^(-1) at 20 A g^(-1))in 2 M NaOH electrolyte.The assembled C_(4)N/rGO//Ni(OH)_(2) full battery can cycle stably more than 38,000 cycles.Furthermore,by adding a small amount of antifreeze additive dimethyl sulfoxide(DMSO)to adjust the hydrogen bonding network,the low-temperature performance of the electrolyte(0.1 DMSO/2 M NaOH)is significantly improved while hydrogen evolution is inhibited.Consequently,the C_(4)N/rGO//Ni(OH)_(2) full cell exhibits an energy density of 147.3 Wh Kg^(-1) and ultra-high cycling stability over a wide temperature range from−70 to 45℃.This work provides an ultra-stable high-capacity CPPbased anode and antifreeze electrolyte for aqueous alkaline batteries and will facilitate their practical applications under extreme conditions.展开更多
Background: Plexiform neurofibromas(PNF) are highly vascular tumors with the potential for significant growth.Surgical removal of giant PNF is often challenging because of intraoperative hemorrhage.This study proposed...Background: Plexiform neurofibromas(PNF) are highly vascular tumors with the potential for significant growth.Surgical removal of giant PNF is often challenging because of intraoperative hemorrhage.This study proposed and evaluated an innovative surgical approach involving FENCY ligation and the role of preoperative embolization in the resection of giant PNF.Methods: This was a retrospective,interventional,and sequential case series conducted in a plastic and reconstructive surgery unit.We summarized all patients with PNF who underwent resection at our center between2019 and 2024.Surgical case notes from 11 patients with giant PNF who underwent FENCY ligation were reviewed,including three patients who received preoperative embolization.All patients participated in structured telephone interviews.Patient demographics,surgical safety,postoperative recovery,and patient satisfaction were evaluated.Results: Among 456 patients with 494 PNF who underwent surgical resection,we categorized the procedures into median,large,and giant PNF subgroups.To illustrate comprehensive perioperative and surgical approaches,we analyzed seven female and four male patients with giant PNF.The median maximum tumor diameter at the time of surgery was 30.4 cm(range,11.5–55.6 cm).Most PNF were located on the face(63.6%),followed by the back(18.2%),buttocks(18.2%),upper limbs(9.1%),and neck(9.1%).The median intraoperative hemorrhage volume was 366 m L(range,10–2 034 m L),And the median hospital stay was 17 days(range,14–33 days).The mean follow-up duration was 2.5 years(range,0.4–5.5 years).No severe complications were observed,except for one case of infection.Conclusion: PNF resection,particularly giant PNF resection,is a high-risk treatment option.Comprehensive evaluation,perioperative preparation,and surgical techniques are required to ensure efficacy and safety.FENCY ligation and preoperative embolization can be used to resect giant PNF in multiple complex regions with satisfactory outcomes.展开更多
Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulner...Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications.展开更多
The prevalence of ulcerative colitis(UC)is increasing annually,while current non-targeted drugs for UC have limited effectiveness,easily relapsed,and serious side effects.Herein,curcumin(Cur)-loaded nanoparticle with ...The prevalence of ulcerative colitis(UC)is increasing annually,while current non-targeted drugs for UC have limited effectiveness,easily relapsed,and serious side effects.Herein,curcumin(Cur)-loaded nanoparticle with conlon-targeted property based on Mesona chinensis polysaccharides(MCP)was developed for the synergistic and targeted improvement of UC.Results show that MCP-zein nanoparticles(ZmNPs)have good encapsulation of Cur,targeted delivery of Cur to the colon,and prolonged its retention time.In vivo safety assessments have shown that ZmNPs have good safety and biocompatibility.As expected,Cur-ZmNPs effectively alleviated the symptoms of Dextran sulfate sodium(DSS)-induced UC by decreasing colonic inflammation by inhibiting the TLR4/MAPK pathway,regulating the levels of oxidative stress and immune homeostasis of UC mice.Oral administration of Cur-ZmNPs can reduce apoptosis of intestinal epithelial cells,alleviate colonic mucosal damage and repair intestinal barrier function.Cur-ZmNPs also had a positive effect on improving gut microbiota disorders and promoting the production of SCFAs.This study provides a novel strategy for synergistic alleviation of UC by MCP-based NPs loaded with food bioactives.展开更多
The two-dimensional MoSe_(2)possesses a large interlayer spacing(0.65 nm)and a narrow bandgap(1.1 eV),showing potential in sodium-ion storage.However,it faces slow kinetics and volume stress during Na^(+)(de)intercala...The two-dimensional MoSe_(2)possesses a large interlayer spacing(0.65 nm)and a narrow bandgap(1.1 eV),showing potential in sodium-ion storage.However,it faces slow kinetics and volume stress during Na^(+)(de)intercalation process,thereby affecting the cycling stability and lifespan of sodium-ion batteries(SIBs).In this work,a novel approach involving anionic doping and structural design has been proposed,wherein a two-step in-situ selenization and surface thermal annealing doping process is applied to fabricate a novel configuration material of fluorine-doped MoSe_(2)@nitrogen-doped carbon nanosheets(F-MoSe_(2)@FNC).The obtained F-MoSe_(2)@FNC,benefiting from the dual advantages of structure and F-doping,synergistically promotes and accelerates the stable(de)intercalation of Na^(+).Henceforth,F-MoSe_(2)@FNC demonstrates notable characteristics in terms of reversible specific capacity,boasting a high initial coulombic efficiency of 76.97%,alongside remarkable rate capabilities and cyclic stability.The constructed F-MoSe_(2)@FNC anode-based half cell manifests exceptional longevity,enduring up to 2550 cycles at 10 A·g^(-1)with a specific capacity of 322.04 mAh·g^(-1).Its electrochemical performance surpasses that of MoSe_(2)@NC and Pure MoSe_(2),underscoring the significance of the proposed synergistic modulation.Through comprehensive kinetic analyses,encompassing in-situ electrochemical impedance spectroscopy(EIS),it is elucidated that the F-MoSe_(2)@FNC electrode showcases elevated pseudo-capacitance and rapid diffusion attributes during charge and discharge processes.Furthermore,the assembled full-cell(F-MoSe_(2)@FNC//Na_(3)V_(2)(PO_(4))_(3))attains a notable energy density of 166.94 Wh·kg^(-1).This design provides insights for the optimization of MoSe_(2)electrodes and their applications in SIBs.展开更多
BACKGROUND We investigated the utility of gamma-glutamyl transferase-to-lymphocyte ratio(GLR)as a predictive indicator for postoperative survival in patients with hepatocellular carcinoma(HCC)across different time per...BACKGROUND We investigated the utility of gamma-glutamyl transferase-to-lymphocyte ratio(GLR)as a predictive indicator for postoperative survival in patients with hepatocellular carcinoma(HCC)across different time periods and developed a predictive model based on this.AIM To evaluate the prognostic accuracy of GLR for overall survival(OS)in patients with HCC and its impact over time.METHODS This study enrolled 301 patients with HCC treated with curative hepatectomy.Exclusion criteria included non-HCC hepatic malignancies,inadequate records,and prior cancer treatments.Baseline demographics,clinical features,and hematological parameters were recorded.Time-dependent receiver operating characteristic curve analysis was used to determine the optimal GLR threshold for survival prediction at 13 months.Statistical analyses included the Kaplan-Meier method,multivariate Cox regression,and the creation of a prognostic nomogram.RESULTS Out of 301 patients,293 were eligible for analysis,with a male predominance(84.6%).High preoperative GLR correlated with several adverse clinical features.Optimal cutoff values for GLR were significantly associated with stratification of 13-month OS.Multivariate analysis identified age,liver enzymes,postoperative transarterial chemoembolization,Child-Pugh grade,and inflammatory markers as independent predictors of OS.Notably,GLR had a significant impact on long-term postoperative OS,with its influence becoming more pronounced over time.CONCLUSION GLR can serve as a potent prognostic tool for postoperative HCC management,particularly in predicting long-term outcomes.展开更多
BACKGROUND Dual-phenotype hepatocellular carcinoma(HCC)is a relatively new subtype of HCC.Studies have shown that in the context of chronic hepatitis,liver cirrhosis,and other liver conditions,some intrahepatic cholan...BACKGROUND Dual-phenotype hepatocellular carcinoma(HCC)is a relatively new subtype of HCC.Studies have shown that in the context of chronic hepatitis,liver cirrhosis,and other liver conditions,some intrahepatic cholangiocarcinomas(ICCs)exhibit an enhancement pattern similar to that of HCC.Both dual-phenotype HCC(DPHCC)and ICC can express biliary markers,making imaging and pathology differentiation difficult.Currently,radiomics is widely used in the differentiation,clinical staging,and prognosis assessment of various diseases.Radiomics can effectively differentiate DPHCC and ICC preoperatively.AIM To evaluate the value of radiomics in the differential diagnosis of DPHCC and ICC and to validate its clinical applicability METHODS In this retrospective study,the data of 53 DPHCC patients and 124 ICC patients were collected retrospectively and randomly divided into training and testing sets at a ratio of 7:3.After delineation of regions of interest and feature extraction and selection,radiomics models were constructed.Receiver operating characteristic curve analysis was conducted to calculate the area under the curve(AUC)for each model.The AUC values of radiologists with and without assistance from the model were also assessed.RESULTS In the training set,the AUC value of the radiomic model was the highest,and the combined model and the radiomic model had similar AUC(P>0.05);the differences in the AUC values between the combined model and the clinical-sign model was statistically significant(P<0.05).In the testing set,the AUC value of the combined model was the highest,and the differences in the AUC values between the combined model and the clinical-sign model was statistically significant(P<0.05).With model assistance,the AUC values of Doctor D(10 years of experience in abdominal imaging diagnosis)and Doctor E(5 years of experience in abdominal imaging diagnosis)both increased.CONCLUSION Radiomics can differentiate DPHCC and ICC,and with assistance from the developed model,the accuracy of less experienced doctors in the differential diagnosis of these two diseases can be improved.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3900400)the National Natural Science Foundation of China(Grant Nos.U2142212 and 42361074)。
文摘Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up table that contains the optical properties of five hydrometeor types—rain,cloud water,cloud ice,graupel,and snow—for the Advanced Radiative Transfer Modeling System(ARMS)at frequencies below 220 GHz.The discrete dipole approximation(DDA)method is employed to compute the single-scattering properties of solid cloud particles,modeling these particles as aggregated roughened bullet rosettes.The bulk optical properties of the cloud layer are derived by integrating the singlescattering properties with a modified Gamma size distribution,specifically for distributions with 18 effective radii.The bulk phase function is then projected onto a series of generalized spherical functions,applying the delta-M method for truncation.The results indicate that simulations using the newly developed nonspherical scattering look-up table exhibit significant consistency with observations under deep convection conditions.In contrast,assuming spherical solid cloud particles leads to excessive scattering at mid-frequency channels and insufficient scattering at high-frequency channels.This improvement in radiative transfer simulation accuracy for cloudy conditions will better support the assimilation of allsky microwave observations into numerical weather prediction models.·Frozen cloud particles were modeled as aggregates of bullet rosettes and the optical properties at microwave range were computed by DDA.·A complete process and technical details for constructing a look-up table of ARMS are provided.·The ARMS simulations generally show agreement with observations of MWTS and MWHS under typhoon conditions using the new look-up table.
基金financially supported by the National Natural Science Foundation of China(No.52231007)the Natural Science Foundation of Shaanxi Province(No.2022JM-248)+1 种基金the Creative Research Foundation of the Science and Technology on Thermostructural Composite Materials Laboratorythe Doctoral Scientific Research Foundation of Shaanxi University of Science&Technology(No.BJ16-06).
文摘The dielectric loss of carbon materials is closely related to the microstructure and the degree of crystallization,and the microstructure modulation of electromagnetic wave absorbing carbon materials is the key to enhancing absorption properties.In this work,a porous elastic Co@CNF-PDMS composite was prepared by freeze-drying and confined catalysis.The graphitization degree and conductivity loss of carbon nanofibers(CNFs)were regulated by heat treatment temperature and Co catalyst content.The construction of a heterointerface between Co and C enhances the interfacial polarization loss.The Co@CNF-PDMS composite with 4.5 mm achieves the minimum reflection loss(RLmin)of-81.0 dB at 9.9 GHz and RL no higher than-12.1 dB in the whole of the X-band.After applying a load of up to 40% strain and 100 cycles to Co@CNF-PDMS,the dielectric properties of the composite remain stable.With the increase of compression strain,the distribution density of the absorbent increases,and the CNF sheet layer extrusion contact forms a conductive path,which leads to the conductive loss increase,finally,the absorption band moves to a high frequency.The absorption band can be bi-directionally regulated by loading and strain with good stability,which provides a new strategy for the development of intelligent electromagnetic wave absorbing materials.
基金supported by the National Key Research and Development Program of China(2021YFF1000304)the National Natural Science Foundation of China(32222060)Anhui Agricultural University(RC422404)to J.Y.
文摘Mitochondria are semi-autonomous organelles present in eukaryotic cells,containing their own genome and transcriptional machinery.However,their functions are intricately linked to proteins encoded by the nuclear genome.Mitochondrial transcription termination factors(mTERFs)are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.Despite their recognized importance,the specific roles of mTERF proteins in maize remain largely unexplored.Here,we clone and functionally characterize the maize mTERF18 gene.Our findings reveal that mTERF18 mutations lead to severely undifferentiated embryos,resulting in abortive phenotypes.Early kernel exhibits abnormal basal endosperm transfer layer and a significant reduction in both starch and protein accumulation in mterf18.We identify the mTERF18 gene through mapping-based cloning and validate this gene through allelic tests.mTERF18 is widely expressed across various maize tissues and encodes a highly conserved mitochondrial protein.Transcriptome data reveal that mTERF18 mutations disrupt transcriptional termination of the nad6 gene,leading to undetectable levels of Nad6 protein and reduced complex I assembly and activity.Furthermore,transmission electron microscopy observation of mterf18 endosperm uncover severe mitochondrial defects.Collectively,these findings highlight the critical role of mTERF18 in mitochondrial gene transcription termination and its pivotal impact on maize kernel development.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA26050301-02)。
文摘The global rise in animal protein consumption has significantly amplified the demand for fodder.A comprehensive understanding of the diversity and characteristics of existing fodder resources is essential for balanced nutritional fodder production.This study investigates the diversity and composition of fodder plants and identifies key species for cattle in Zhaotong City,Yunnan,China,while documenting indigenous knowledge on their usage and selection criteria.Ethnobotanical surveys were conducted in 19 villages across seven townships with 140 informants.Data were collected through semi-structured interviews,free listing,and participatory observation,and analyzed using Relative Frequency Citation.A total of 125 taxa(including 106 wild and 19 cultivated)were reported.The most cited family is Poaceae(27 taxa,21.43%),followed by Asteraceae(17 taxa,13.49%),Fabaceae(14 taxa,11.11%),Polygonaceae(9 taxa,7.14%)and Lamiaceae(4 taxa,3.17%).The whole plant(66.04%)and herbaceous plants(84.80%)were the most used parts and life forms.The most cited species were Zea mays,Brassica rapa,Solanum tuberosum,Eragrostis nigra,and Artemisia dubia.Usage of diverse fodder resources reflects local wisdom in managing resource availability and achieving balanced nutrition while coping with environmental and climatic risks.Preferences for certain taxonomic groups are due to their quality as premier fodder resources.To promote integrated crop-livestock farming,we suggest further research into highly preferred fodder species,focusing on nutritional assessment,digestibility,meat quality impacts,and potential as antibiotic alternatives.Establishing germplasm and gene banks for fodder resources is also recommended.
基金supported by the Fundamental Research Funds for the Central Universities(2021ZY62)the National Natural ScienceFoundation of China(31901337)the 5·5 Engineering Research&Innovation Team Project of Beijing Forestry University(BLRC2023C06).
文摘Eucalyptus urophylla×E.grandis is a major hybrid species of timber plantations.However,our under-standing of Eucalyptus mitochondrial genome,especially within the Myrtaceae family,is limited.In this study,we employed hybrid sequencing combining the Illumina and Oxford Nanopore sequencing to assemble and annotate the mitogenome(mtDNA)of E.urophylla×E.grandis.Our results reveal a structure characterized by one circular mol-ecule,with a cumulative length of 483,907 base pairs(bp)and a GC content of 44.96%.The circular molecule collec-tively harbored 59 annotated genes.Among these,38 were unique protein-coding genes(PCGs),accompanied by 18 transfer RNA(tRNA)genes and 3 ribosomal RNA(rRNA)genes.Our study also examined repetitive sequences,RNA editing sites,and intracellular sequence transfers within the mtDNA.Furthermore,we conducted a phylogenetic analy-sis between E.urophylla×E.grandis and 30 closely related species based on genetic affinities.The outcomes furnish a high-quality organelle genome for E.urophylla×E.grandis,thereby explaining basic insights into organelle genome evo-lution and phylogenetic relationships.
基金supported by the Demonstration System for High Resolution Meteorological Application(Ⅱ)[grant number 32-Y30F08-9001-20/22]the National Natural Science Foundation of China[grant numbers 12292981 and 12292984]。
文摘Early detection of convective clouds is vital for minimizing hazardous impacts.Forecasting convective initiation(CI)using current multispectral geostationary meteorological satellites is often challenged by high false-alarm rates and missed detections caused by limited resolution.In contrast,high-resolution earth observation satellites offer more detailed texture information,improving early detection capabilities.The authors propose a novel methodology that integrates the advanced features of China’s latest-generation satellites,Gaofen-4(GF-4)and Fengyun-4A(FY-4A).This fusion method retains GF’s high-resolution details and FY-4A’s multispectral information.Two cases from different observational scenarios and weather conditions under GF-4’s staring mode were carried out to compare the CI forecast results based on fused data and solely on FY-4A data.The fused data demonstrated superior performance in detecting smaller-scale convective clouds,enabling earlier forecasting with a lead time of 15–30 minutes,and more accurate location identification.Integrating high-resolution earth observation satellites into early convective cloud detection provides valuable insights for forecasters and decision-makers,particularly given the current resolution limitations of geostationary meteorological satellites.
基金supported by the National Natural Science Foundation of China(22074072,22274083,52376199)the Shandong Provincial Natural Science Foundation(ZR2023LZY005)+1 种基金the Exploration Project of the State Key Laboratory of BioFibers and EcoTextiles of Qingdao University(TSKT202101)the Fundamental Research Funds for the Central Universities(2022BLRD13,2023BLRD01).
文摘A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory.
基金supported by the National Natural Science Foundation of China(92470110)the Special Funds for the Development of Strategic Emerging Industries in Shenzhen(XMHT20240108008)the Shenzhen Stable Support Program for Higher Education Institutions(WDZC20231126215806001)。
文摘The formation of interphase layers,including the cathode-electrolyte interphase(CEI)and solidelectrolyte interphase(SEI),exhibits significant chemical complexity and plays a pivotal role in determining the performance of lithium batteries.Despite considerable advances in simulating the bulk phase properties of battery materials,the understanding of interfaces,including crystalline interfaces that represent the simplest case,remains limited.This is primarily due to challenges in performing ground-state searches for interface microstructures and the high computational costs associated with first-principles methods.Herein,we introduce InterOptimus,an automated workflow designed to efficiently search for ground-state heterogeneous interfaces.InterOptimus incorporates a rigorous,symmetry-aware equivalence analysis for lattice matching and termination scanning.Additionally,it introduces stereographic projection as an intuitive and comprehensive framework for visualizing and classifying interface structures.By integrating universal machine learning interatomic potentials(MLIPs),InterOptimus enables rapid predictions of interface energy and stability,significantly reducing the necessary computational cost in density functional theory(DFT)by over 90%.We benchmarked several MLIPs at three critical lithium battery interfaces,Li_(2)S|Ni_(3)S_(2),LiF|NCM,and Li_(3)PS_(4)|Li,and demonstrated that the MLIPs achieve accuracy comparable to DFT in modeling potential energy surfaces and ranking interface stabilities.Thus,InterOptimus facilitates the efficient determination of ground-state heterogeneous interface structures and subsequent studies of structure-property relationships,accelerating the interface engineering of novel battery materials.
基金financial support by the National Natural Science Foundation of China(22371010,21771017 and 51702009)the“Hundred Talents Program”of the Chinese Academy of Science,Fundamental Research Funds for the Central Universities,Shenzhen Science and Technology Program(JCYJ20210324115412035 JCYJ2021-0324123202008,JCYJ20210324122803009 and ZDSYS20210813095534001)Guangdong Basic and Applied Basic Research Foundation(2021A1515110880).
文摘Common anode materials in aqueous alkaline electrolytes,such as cadmium,metal hydrides and zinc,usually suffer from remarkable biotoxicity,high cost,and serious side reactions.To overcome these problems,we develop a conjugated porous polymer(CPP)in-situ grown on reduced graphene oxide(rGO)and Ketjen black(KB),noted as C_(4)N/rGO and C_(4)N/KB respectively,as the alternative anodes.The results show that C_(4)N/rGO electrode delivers a low redox potential(−0.905 V vs.Ag/AgCl),high specific capacity(268.8 mAh g^(-1) at 0.2 A g^(-1)),ultra-stable and fast sodium ion storage behavior(216 mAh g^(-1) at 20 A g^(-1))in 2 M NaOH electrolyte.The assembled C_(4)N/rGO//Ni(OH)_(2) full battery can cycle stably more than 38,000 cycles.Furthermore,by adding a small amount of antifreeze additive dimethyl sulfoxide(DMSO)to adjust the hydrogen bonding network,the low-temperature performance of the electrolyte(0.1 DMSO/2 M NaOH)is significantly improved while hydrogen evolution is inhibited.Consequently,the C_(4)N/rGO//Ni(OH)_(2) full cell exhibits an energy density of 147.3 Wh Kg^(-1) and ultra-high cycling stability over a wide temperature range from−70 to 45℃.This work provides an ultra-stable high-capacity CPPbased anode and antifreeze electrolyte for aqueous alkaline batteries and will facilitate their practical applications under extreme conditions.
基金supported by grants from the National Natural Science Foundation of China (grant nos.82472579,82172228,and 82202470)Shanghai Plastic Surgery Research Center of Shanghai Priority Research Center (grant no.2023ZZ02023)+2 种基金Shanghai Clinical Research Center of Plastic and Reconstructive Surgery supported by the Science and Technology Commission of Shanghai Municipality (grant no.22MC1940300)Project of Biobank (grant no.YBKA202204) from Shanghai Ninth People’s Hospital of Shanghai Jiao Tong University School of MedicineCross-Disciplinary Research Fund of Shanghai Ninth People’s Hospital of Shanghai Jiao Tong University School of Medicine (grant no.JYJC202407)。
文摘Background: Plexiform neurofibromas(PNF) are highly vascular tumors with the potential for significant growth.Surgical removal of giant PNF is often challenging because of intraoperative hemorrhage.This study proposed and evaluated an innovative surgical approach involving FENCY ligation and the role of preoperative embolization in the resection of giant PNF.Methods: This was a retrospective,interventional,and sequential case series conducted in a plastic and reconstructive surgery unit.We summarized all patients with PNF who underwent resection at our center between2019 and 2024.Surgical case notes from 11 patients with giant PNF who underwent FENCY ligation were reviewed,including three patients who received preoperative embolization.All patients participated in structured telephone interviews.Patient demographics,surgical safety,postoperative recovery,and patient satisfaction were evaluated.Results: Among 456 patients with 494 PNF who underwent surgical resection,we categorized the procedures into median,large,and giant PNF subgroups.To illustrate comprehensive perioperative and surgical approaches,we analyzed seven female and four male patients with giant PNF.The median maximum tumor diameter at the time of surgery was 30.4 cm(range,11.5–55.6 cm).Most PNF were located on the face(63.6%),followed by the back(18.2%),buttocks(18.2%),upper limbs(9.1%),and neck(9.1%).The median intraoperative hemorrhage volume was 366 m L(range,10–2 034 m L),And the median hospital stay was 17 days(range,14–33 days).The mean follow-up duration was 2.5 years(range,0.4–5.5 years).No severe complications were observed,except for one case of infection.Conclusion: PNF resection,particularly giant PNF resection,is a high-risk treatment option.Comprehensive evaluation,perioperative preparation,and surgical techniques are required to ensure efficacy and safety.FENCY ligation and preoperative embolization can be used to resect giant PNF in multiple complex regions with satisfactory outcomes.
基金supported by the fundings from 2024 Young Talents Program for Science and Technology Thinking Tanks(No.XMSB20240711041)2024 Student Research Program on Dynamic Simulation and Force-on-Force Exercise of Nuclear Security in 3D Interactive Environment Using Reinforcement Learning,Natural Science Foundation of Top Talent of SZTU(No.GDRC202407)+2 种基金Shenzhen Science and Technology Program(No.KCXFZ20240903092603005)Shenzhen Science and Technology Program(No.JCYJ20241202124703004)Shenzhen Science and Technology Program(No.KJZD20230923114117032)。
文摘Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications.
基金supported by the National Key Research and Development Program of China(2023YFF1104001)Natural Science Foundation of Jiangxi Province,China(20232BCD44003).
文摘The prevalence of ulcerative colitis(UC)is increasing annually,while current non-targeted drugs for UC have limited effectiveness,easily relapsed,and serious side effects.Herein,curcumin(Cur)-loaded nanoparticle with conlon-targeted property based on Mesona chinensis polysaccharides(MCP)was developed for the synergistic and targeted improvement of UC.Results show that MCP-zein nanoparticles(ZmNPs)have good encapsulation of Cur,targeted delivery of Cur to the colon,and prolonged its retention time.In vivo safety assessments have shown that ZmNPs have good safety and biocompatibility.As expected,Cur-ZmNPs effectively alleviated the symptoms of Dextran sulfate sodium(DSS)-induced UC by decreasing colonic inflammation by inhibiting the TLR4/MAPK pathway,regulating the levels of oxidative stress and immune homeostasis of UC mice.Oral administration of Cur-ZmNPs can reduce apoptosis of intestinal epithelial cells,alleviate colonic mucosal damage and repair intestinal barrier function.Cur-ZmNPs also had a positive effect on improving gut microbiota disorders and promoting the production of SCFAs.This study provides a novel strategy for synergistic alleviation of UC by MCP-based NPs loaded with food bioactives.
基金supported by the National Natural Science Foundation of China(No.52301260)the National Science Foundation of Jiangsu Province(No.BK20230712)China Postdoctoral Science Foundation(No.2022M711686).
文摘The two-dimensional MoSe_(2)possesses a large interlayer spacing(0.65 nm)and a narrow bandgap(1.1 eV),showing potential in sodium-ion storage.However,it faces slow kinetics and volume stress during Na^(+)(de)intercalation process,thereby affecting the cycling stability and lifespan of sodium-ion batteries(SIBs).In this work,a novel approach involving anionic doping and structural design has been proposed,wherein a two-step in-situ selenization and surface thermal annealing doping process is applied to fabricate a novel configuration material of fluorine-doped MoSe_(2)@nitrogen-doped carbon nanosheets(F-MoSe_(2)@FNC).The obtained F-MoSe_(2)@FNC,benefiting from the dual advantages of structure and F-doping,synergistically promotes and accelerates the stable(de)intercalation of Na^(+).Henceforth,F-MoSe_(2)@FNC demonstrates notable characteristics in terms of reversible specific capacity,boasting a high initial coulombic efficiency of 76.97%,alongside remarkable rate capabilities and cyclic stability.The constructed F-MoSe_(2)@FNC anode-based half cell manifests exceptional longevity,enduring up to 2550 cycles at 10 A·g^(-1)with a specific capacity of 322.04 mAh·g^(-1).Its electrochemical performance surpasses that of MoSe_(2)@NC and Pure MoSe_(2),underscoring the significance of the proposed synergistic modulation.Through comprehensive kinetic analyses,encompassing in-situ electrochemical impedance spectroscopy(EIS),it is elucidated that the F-MoSe_(2)@FNC electrode showcases elevated pseudo-capacitance and rapid diffusion attributes during charge and discharge processes.Furthermore,the assembled full-cell(F-MoSe_(2)@FNC//Na_(3)V_(2)(PO_(4))_(3))attains a notable energy density of 166.94 Wh·kg^(-1).This design provides insights for the optimization of MoSe_(2)electrodes and their applications in SIBs.
基金Supported by the National Natural Science Foundation of China,No.82060447 and No.82260553the Key Project of Jiangxi Provincial Natural Science Foundation,No.20224ACB206035+2 种基金the General Project of Jiangxi Provincial Natural Science Foundation,No.20232BAB206109Jiangxi Provincial Natural Science Foundation,No.20242BAB26002the Youth Project of Jiangxi Provincial Natural Science Foundation,No.20224BAB216057.
文摘BACKGROUND We investigated the utility of gamma-glutamyl transferase-to-lymphocyte ratio(GLR)as a predictive indicator for postoperative survival in patients with hepatocellular carcinoma(HCC)across different time periods and developed a predictive model based on this.AIM To evaluate the prognostic accuracy of GLR for overall survival(OS)in patients with HCC and its impact over time.METHODS This study enrolled 301 patients with HCC treated with curative hepatectomy.Exclusion criteria included non-HCC hepatic malignancies,inadequate records,and prior cancer treatments.Baseline demographics,clinical features,and hematological parameters were recorded.Time-dependent receiver operating characteristic curve analysis was used to determine the optimal GLR threshold for survival prediction at 13 months.Statistical analyses included the Kaplan-Meier method,multivariate Cox regression,and the creation of a prognostic nomogram.RESULTS Out of 301 patients,293 were eligible for analysis,with a male predominance(84.6%).High preoperative GLR correlated with several adverse clinical features.Optimal cutoff values for GLR were significantly associated with stratification of 13-month OS.Multivariate analysis identified age,liver enzymes,postoperative transarterial chemoembolization,Child-Pugh grade,and inflammatory markers as independent predictors of OS.Notably,GLR had a significant impact on long-term postoperative OS,with its influence becoming more pronounced over time.CONCLUSION GLR can serve as a potent prognostic tool for postoperative HCC management,particularly in predicting long-term outcomes.
文摘BACKGROUND Dual-phenotype hepatocellular carcinoma(HCC)is a relatively new subtype of HCC.Studies have shown that in the context of chronic hepatitis,liver cirrhosis,and other liver conditions,some intrahepatic cholangiocarcinomas(ICCs)exhibit an enhancement pattern similar to that of HCC.Both dual-phenotype HCC(DPHCC)and ICC can express biliary markers,making imaging and pathology differentiation difficult.Currently,radiomics is widely used in the differentiation,clinical staging,and prognosis assessment of various diseases.Radiomics can effectively differentiate DPHCC and ICC preoperatively.AIM To evaluate the value of radiomics in the differential diagnosis of DPHCC and ICC and to validate its clinical applicability METHODS In this retrospective study,the data of 53 DPHCC patients and 124 ICC patients were collected retrospectively and randomly divided into training and testing sets at a ratio of 7:3.After delineation of regions of interest and feature extraction and selection,radiomics models were constructed.Receiver operating characteristic curve analysis was conducted to calculate the area under the curve(AUC)for each model.The AUC values of radiologists with and without assistance from the model were also assessed.RESULTS In the training set,the AUC value of the radiomic model was the highest,and the combined model and the radiomic model had similar AUC(P>0.05);the differences in the AUC values between the combined model and the clinical-sign model was statistically significant(P<0.05).In the testing set,the AUC value of the combined model was the highest,and the differences in the AUC values between the combined model and the clinical-sign model was statistically significant(P<0.05).With model assistance,the AUC values of Doctor D(10 years of experience in abdominal imaging diagnosis)and Doctor E(5 years of experience in abdominal imaging diagnosis)both increased.CONCLUSION Radiomics can differentiate DPHCC and ICC,and with assistance from the developed model,the accuracy of less experienced doctors in the differential diagnosis of these two diseases can be improved.