Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.There...Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.Thereis thus a pressing need to develop an organogenesis protocol for in vitro propagation of T.amurensis to alleviate ashortage of high-quality T.amurensis seedlings.Here,we established a rapid in vitro propagation system forT.amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture mediain different stages.We found that Woody plant medium(WPM)was the optimal primary culture medium formature zygotic embryos.The highest callus induction percentage(68.76%)and number of axillary buds induced(3.2)were obtained in WPM+0.89μmol/L 6-benzyladenine(6-BA)+0.46μmol/L kinetin(KT)+0.25μmol/Lindole-3-butryic acid(IBA)+1.44μmol/L gibberellin A_(3)(GA_(3)).The multiple shoot bud development achievedthe highest percentage(83.32%)in the Murashige and Skoog(MS)+2.22μmol/L 6-BA+0.25μmol/L IBA+1.44μmol/L GA_(3).The rooting percentage(96.70%)was highest in 1/2 MS medium+1.48μmol/L IBA.Thesurvival percentage of transplanting plantlets was 82.22%in soil:vermiculite:perlite(5:3:1).Our study is the firstto establish an effective organogenesis protocol for T.amurensis using mature zygotic embryos.展开更多
Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the fie...Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the field of mathematics.Design/methodology/approach:Two community detection algorithms,namely Greedy Modularity Maximization and Infomap,are utilized to examine collaboration patterns among mathematicians.We conduct a comparative analysis of mathematicians’centrality,emphasizing the influence of award-winning individuals in connecting network roles such as Betweenness,Closeness,and Harmonic centrality.Additionally,we investigate the distribution of elite mathematicians across communities and their relationships within different mathematical sub-fields.Findings:The study identifies the substantial influence exerted by award-winning mathematicians in connecting network roles.The elite distribution across the network is uneven,with a concentration within specific communities rather than being evenly dispersed.Secondly,the research identifies a positive correlation between distinct mathematical sub-fields and the communities,indicating collaborative tendencies among scientists engaged in related domains.Lastly,the study suggests that reduced research diversity within a community might lead to a higher concentration of elite scientists within that specific community.Research limitations:The study’s limitations include its narrow focus on mathematicians,which may limit the applicability of the findings to broader scientific fields.Issues with manually collected data affect the reliability of conclusions about collaborative networks.Practical implications:This study offers valuable insights into how elite mathematicians collaborate and how knowledge is disseminated within mathematical circles.Understanding these collaborative behaviors could aid in fostering better collaboration strategies among mathematicians and institutions,potentially enhancing scientific progress in mathematics.Originality/value:The study adds value to understanding collaborative dynamics within the realm of mathematics,offering a unique angle for further exploration and research.展开更多
基金This work was supported by the Science and Technology Development Plan Project of Jilin Province,China(20200402115NC).
文摘Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.Thereis thus a pressing need to develop an organogenesis protocol for in vitro propagation of T.amurensis to alleviate ashortage of high-quality T.amurensis seedlings.Here,we established a rapid in vitro propagation system forT.amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture mediain different stages.We found that Woody plant medium(WPM)was the optimal primary culture medium formature zygotic embryos.The highest callus induction percentage(68.76%)and number of axillary buds induced(3.2)were obtained in WPM+0.89μmol/L 6-benzyladenine(6-BA)+0.46μmol/L kinetin(KT)+0.25μmol/Lindole-3-butryic acid(IBA)+1.44μmol/L gibberellin A_(3)(GA_(3)).The multiple shoot bud development achievedthe highest percentage(83.32%)in the Murashige and Skoog(MS)+2.22μmol/L 6-BA+0.25μmol/L IBA+1.44μmol/L GA_(3).The rooting percentage(96.70%)was highest in 1/2 MS medium+1.48μmol/L IBA.Thesurvival percentage of transplanting plantlets was 82.22%in soil:vermiculite:perlite(5:3:1).Our study is the firstto establish an effective organogenesis protocol for T.amurensis using mature zygotic embryos.
基金supported by grants from the National Natural Science Foundation of China No.NSFC62006109 and NSFC12031005the 13th Five-year plan for Education Science Funding of Guangdong Province No.2021GXJK349,No.2020GXJK457the Stable Support Plan Program of Shenzhen Natural Science Fund No.20220814165010001.
文摘Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the field of mathematics.Design/methodology/approach:Two community detection algorithms,namely Greedy Modularity Maximization and Infomap,are utilized to examine collaboration patterns among mathematicians.We conduct a comparative analysis of mathematicians’centrality,emphasizing the influence of award-winning individuals in connecting network roles such as Betweenness,Closeness,and Harmonic centrality.Additionally,we investigate the distribution of elite mathematicians across communities and their relationships within different mathematical sub-fields.Findings:The study identifies the substantial influence exerted by award-winning mathematicians in connecting network roles.The elite distribution across the network is uneven,with a concentration within specific communities rather than being evenly dispersed.Secondly,the research identifies a positive correlation between distinct mathematical sub-fields and the communities,indicating collaborative tendencies among scientists engaged in related domains.Lastly,the study suggests that reduced research diversity within a community might lead to a higher concentration of elite scientists within that specific community.Research limitations:The study’s limitations include its narrow focus on mathematicians,which may limit the applicability of the findings to broader scientific fields.Issues with manually collected data affect the reliability of conclusions about collaborative networks.Practical implications:This study offers valuable insights into how elite mathematicians collaborate and how knowledge is disseminated within mathematical circles.Understanding these collaborative behaviors could aid in fostering better collaboration strategies among mathematicians and institutions,potentially enhancing scientific progress in mathematics.Originality/value:The study adds value to understanding collaborative dynamics within the realm of mathematics,offering a unique angle for further exploration and research.