Elastic strain constitutes a decisive factor in determining the recoverable deformability of thermoelectric materials.Plastic deformation for microstructure engineering has been demonstrated as a viable approach to en...Elastic strain constitutes a decisive factor in determining the recoverable deformability of thermoelectric materials.Plastic deformation for microstructure engineering has been demonstrated as a viable approach to enhance the elastic strain.However,this approach is highly dependent on the material's plasticity,which is rather limited by the rigidity for the majority of inorganic semiconducting thermoelectric materials.Thermocouple materials,as metallic thermoelectric materials,possess a favorable plasticity,motivating this work to focus on the elastic bendability of a metallic thermoelectric generator that is composed of K-type thermocouple components,namely p-type Ni_(90)Cr_(10) and n-type Ni_(95)Al_(2)Mn_(2)Si.The cold-rolling process enables a large elastic modulus and a high yield strength,thanks to the texturized direction along<111>,and dense dislocations and refined grains,respectively,eventually resulting in a 400%increase in the elastic strain.Such superior elasticity ensures the preservation of the initial transport properties for the rolled films even after being bent 100000 times within a radius of~8 mm.A power output of~414μW is achieved in a ten-leg flexible thermoelectric device,suggesting its substantial potential for powering wearable electronics.展开更多
基金supported by the National Key Research and Development Program of China(2023YFB3809400)the National Natural Science Foundation of China(Grant nos.T2125008,92163203,and 52371234)+1 种基金the Hong Kong,Macao,and Taiwan Science and Technology Cooperation Project for Science and Technology Innovation Plan of Shanghai(23520760600)the Fundamental Research Funds for the Central Universities.
文摘Elastic strain constitutes a decisive factor in determining the recoverable deformability of thermoelectric materials.Plastic deformation for microstructure engineering has been demonstrated as a viable approach to enhance the elastic strain.However,this approach is highly dependent on the material's plasticity,which is rather limited by the rigidity for the majority of inorganic semiconducting thermoelectric materials.Thermocouple materials,as metallic thermoelectric materials,possess a favorable plasticity,motivating this work to focus on the elastic bendability of a metallic thermoelectric generator that is composed of K-type thermocouple components,namely p-type Ni_(90)Cr_(10) and n-type Ni_(95)Al_(2)Mn_(2)Si.The cold-rolling process enables a large elastic modulus and a high yield strength,thanks to the texturized direction along<111>,and dense dislocations and refined grains,respectively,eventually resulting in a 400%increase in the elastic strain.Such superior elasticity ensures the preservation of the initial transport properties for the rolled films even after being bent 100000 times within a radius of~8 mm.A power output of~414μW is achieved in a ten-leg flexible thermoelectric device,suggesting its substantial potential for powering wearable electronics.