This study investigates photonuclear reaction(γ,n)cross-sections using Bayesian neural network(BNN)analysis.After determining the optimal network architecture,which features two hidden layers,each with 50 hidden node...This study investigates photonuclear reaction(γ,n)cross-sections using Bayesian neural network(BNN)analysis.After determining the optimal network architecture,which features two hidden layers,each with 50 hidden nodes,training was conducted for 30,000 iterations to ensure comprehensive data capture.By analyzing the distribution of absolute errors positively correlated with the cross-section for the isotope 159Tb,as well as the relative errors unrelated to the cross-section,we confirmed that the network effectively captured the data features without overfitting.Comparison with the TENDL-2021 Database demonstrated the BNN's reliability in fitting photonuclear cross-sections with lower average errors.The predictions for nuclei with single and double giant dipole resonance peak cross-sections,the accurate determination of the photoneutron reaction threshold in the low-energy region,and the precise description of trends in the high-energy cross-sections further demonstrate the network's generalization ability on the validation set.This can be attributed to the consistency of the training data.By using consistent training sets from different laboratories,Bayesian neural networks can predict nearby unknown cross-sections based on existing laboratory data,thereby estimating the potential differences between other laboratories'existing data and their own measurement results.Experimental measurements of photonuclear reactions on the newly constructed SLEGS beamline will contribute to clarifying the differences in cross-sections within the existing data.展开更多
We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between e...We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between existing measurements and evaluations of this cross-section.Using an unfolding iteration method,^(63)Cu(γ,n)data were obtained with an uncertainty of less than 4%,and the inconsistencies between the available experimental data were discussed.Theγ-ray strength function of^(63)Cu(γ,n)was successfully extracted as an experimental constraint.We further calculated the cross-section of the radiative neutron capture reaction^(62)Cu(n,γ)using the TALYS code.Our calculation method enables the extraction of(n,γ)cross-sections for unstable nuclides.展开更多
The accurate photoneutron cross section of the^(27)Al nucleus has a significant impact on resolving differences in existing experimental data and enhancing the precision of nuclear reaction rate calculations for^(26)A...The accurate photoneutron cross section of the^(27)Al nucleus has a significant impact on resolving differences in existing experimental data and enhancing the precision of nuclear reaction rate calculations for^(26)Al in nuclear astrophysics.The photoneutron cross sections for the^(27)Al(γ,n)^(26)Al reaction,within the neutron separation energy range of 13.2-21.7 MeV,were meticulously measured using a new flat efficiency detector array at the Shanghai Laser-Electron Gamma Source.The uncertainty of the data was controlled to below 4%throughout the process,and inconsistencies between the present data and existing data from different gamma sources,as well as the TENDL-2021 data,are discussed in detail.These discussions provide a valuable reference for addressing discrepancies in the^(27)Al(γ,n)^(26)Al cross-section data and improving related theoretical calculations.展开更多
Correction to:Nuclear Science and Techniques(2025)36:66 https://doi.org/10.1007/s41365-025-01662-y.In this article,the author’s name Hui-Ling Wei was incorrectly written as Hui-Ling We.The original article has been c...Correction to:Nuclear Science and Techniques(2025)36:66 https://doi.org/10.1007/s41365-025-01662-y.In this article,the author’s name Hui-Ling Wei was incorrectly written as Hui-Ling We.The original article has been corrected.展开更多
Energy-variable gamma-rays are produced in Laser Compton Slant-scattering mode at the Shanghai Laser Electron Gamma Source(SLEGS),a beamline of the Shanghai Synchrotron Radiation Facility(also called Shanghai Light So...Energy-variable gamma-rays are produced in Laser Compton Slant-scattering mode at the Shanghai Laser Electron Gamma Source(SLEGS),a beamline of the Shanghai Synchrotron Radiation Facility(also called Shanghai Light Source).Based on the SLEGS energy-variable gamma-ray beam,a positron generation system composed of a gamma-ray-driven section,positron-generated target,magnet separation section and positron experimental section was designed for SLEGS.Geant4 simulation results show that the energy tunable positron beam in the energy range of 1–12.9 MeV with a flux of 3.7×10^(4)–6.9×10^(5)e^(+)∕s can be produced in this positron generation system.The positron beam generation and separation provide favorable experimental conditions for conducting nondestructive positron testing on SLEGS in the future.The positron generation system is currently under construction and will be completed in 2025.展开更多
Photonuclear data are increasingly used in fundamental nuclear research and technological applications.These data are generated using advanced γ-ray sources.The Shanghai laser electron gamma source(SLEGS)is a new las...Photonuclear data are increasingly used in fundamental nuclear research and technological applications.These data are generated using advanced γ-ray sources.The Shanghai laser electron gamma source(SLEGS)is a new laser Compton scattering γ-ray source at the Shanghai Synchrotron Radiation Facility.It delivers energy-tunable,quasi-monoenergetic gamma beams for high-precision photonuclear measurements.This paper presents the flat-efficiency detector(FED)array at SLEGS and its application in photoneutron cross-section measurements.Systematic uncertainties of the FED array were determined to be 3.02%through calibration with a ^(252)Cf neutron source.Using ^(197)Au and ^(159)Tb as representative nuclei,we demonstrate the format and processing methodology for raw photoneutron data.The results validate SLEGS’capability for high-precision photoneutron measurements.展开更多
The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analys...The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analysis platform,including online activation and offiine low background High-Purity Germanium(HPGe)detector measurement systems,as an alternative to direct measurement methods and low-throughput cross-tests.Owing to short half-lives spanning from minutes to days and characteristics such as ease of fabrication,cost-effectiveness,and stability,gold(~(197)Au)and zinc(~(64)Zn)emerge as favorable activation targets for theγ-ray beam flux monitor.Notably,they exhibit a multitude of advantages in monitoring theγ-ray beam flux,typically 10^(5)photons/s,with energies of 13.16 Me V to 19.08 Me V using a 3 mm coarse collimator.In particular,high-fluxγ-ray beam experiments can be conducted effectively.展开更多
^(147,149)Sm are slow neutron capture(s-process)nuclides in nuclear astrophysics,whose(n,γ)cross sections are important input parameters in nucleosynthesis network calculations in the samarium(Sm)region.In addition,^...^(147,149)Sm are slow neutron capture(s-process)nuclides in nuclear astrophysics,whose(n,γ)cross sections are important input parameters in nucleosynthesis network calculations in the samarium(Sm)region.In addition,^(149)Sm is a fission product of ^(235)U with a 1%yield,and its neutron resonance parameters play a critical role in reactor neutronics.According to the available nuclear evaluation databases,a significant disagreement has been observed in the resonance peaks of the ^(147,149)Sm(n,γ)crosssectional data within the energy range of 20-300 eV.In this study,tutron capture cross section of a natural samarium target was measured at the back-streaming white neutron beamline of the China Spallation Neutron Source.The neutron capture yield was obtained,and the neutron resonance parameters for ^(147)Sm at 107.0,139.4,241.7,and 257.3 eV and ^(149)Sm at 23.2,24.6,26.1,28.0,51.5,75.2,90.9,125.3,and 248.4 eV were extracted using the SAMMY code based on R-matrix theory.For the parameters Γ_(n) and Γ_(γ) in these energies of ^(147,149)Sm,the percentages consistent with the results of the CENDL-3.2,ENDF/B-Ⅷ.0,JEFF-3.3,JENDL-4.0,and BROND-3.1 database are 27%,65%,65%,42%,and 58%,respectively.However,27% of the results were inconsistent with those of the major libraries.This work enriches experimental data of the ^(147,149)Sm neutron capture resonance and helps clarify the differences between different evaluation databases at the above energies.展开更多
The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear ...The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear structure, which is in extensive demand in fields such as nuclear astrophysics, nuclear cluster structure, polarization physics, and nuclear energy. The beamline is based on the inverse Compton scattering of 10640 nm photons on 3.5 GeV electrons and a gamma source with variable energy by changing the scattering angle from 20° to 160°. γ rays of 0.25-21.1 MeV can be extracted by the scheme consisting of the interaction chamber, coarse collimator, fine collimator, and attenuator. The maximum photon flux for 180° is approximately 10~7 photons/s at the target at 21.7 MeV, with a 3-mm-diameter beam. The beamline was equipped with four types of spectrometers for experiments in( γ,γ'),( γ,n),( γ,p), and( γ,α). At present, Nuclear Resonance Fluorescence(NRF) spectrometry, Flat-Efficiency neutron Detector(FED) spectrometry, neutron Time-Of-Flight(TOF) spectrometry, and Light-Charged Particle(LCP) spectrometry methods have been developed.展开更多
The Shanghai Laser Electron Gamma Source(SLEGS)is a powerful gamma source that provides MeV gamma-ray beams for nuclear science and technology.It was developed as one of the 16 beamline stations in the Phase Ⅱ Projec...The Shanghai Laser Electron Gamma Source(SLEGS)is a powerful gamma source that provides MeV gamma-ray beams for nuclear science and technology.It was developed as one of the 16 beamline stations in the Phase Ⅱ Project of the Shanghai Synchrotron Radiation Facility.The slant-scattering mode is for the first time systematically employed in laser Compton scattering at SLEGS to produce energy-tunable quasi-monoenergetic gamma-ray beams.The SLEGS officially completed its commissioning from July to December 2021.Gamma rays in the energy range of 0.25-21.7 MeV with a flux of 2.1×10^(4)-1.2×10^(7) photons/s and an energy spread of 2-15% were produced during the test.This paper reports the results from commissioning the SLEGS beamline.展开更多
The Shanghai laser electron gamma source(SLEGS)is a powerful tool for exploring photonuclear physics,such as giant dipole resonance(GDR)and pygmy dipole resonance,which are the main mechanisms of collective nuclear mo...The Shanghai laser electron gamma source(SLEGS)is a powerful tool for exploring photonuclear physics,such as giant dipole resonance(GDR)and pygmy dipole resonance,which are the main mechanisms of collective nuclear motion.The goal of the SLEGS neutron time-of-flight(TOF)spectrometer is to measure GDR and specific nuclear structures in the energy region above the neutron threshold.The SLEGS TOF spectrometer was designed to hold 20 sets of EJ301 and LaBr3 detectors.Geant4 was used to simulate the efficiency of each detector and the entire spectrometer,which provides a reference for the selection of detectors and layout of the SLEGS TOF spectrometer.Under the events of 208Pb,implementations of coincidence and time-of-flight technology for complex experiments are available;thus,and neutron decay events can be separated.The performance of SLEGS TOF spectrometer was systematically evaluated using offline experiments,in which the time resolution reached approximately 0.9 ns.展开更多
The neutron capture cross section of 197 Au was measured using the time-of-flight(TOF)technique at the Back-n facility of the China Spallation Neutron Source(CSNS)in the 1 eV to 100 keV range.Prompt c-rays originating...The neutron capture cross section of 197 Au was measured using the time-of-flight(TOF)technique at the Back-n facility of the China Spallation Neutron Source(CSNS)in the 1 eV to 100 keV range.Prompt c-rays originating from neutron-induced capture events were detected by four C_(6)D_(6) liquid scintillator detectors.Pulse height weighting technology(PHWT)was used to analyze the data.The results are in good agreement with ENDF/B-VIII.0,CENDL-3.1,and other evaluated libraries in the resonance region,and in agreement with both n TOF and GELINA experimental data in the 5–100 keV range.Finally,the resonance peaks in the energy range from 1eV to 1 keV were fitted by the SAMMY R-matrix code.展开更多
Silver indium cadmium(Ag–In–Cd) control rod is widely used in pressurized water reactor nuclear power plants,and it is continuously consumed in a high neutron flux environment. The mass ratio of ^(107)Ag in the Ag...Silver indium cadmium(Ag–In–Cd) control rod is widely used in pressurized water reactor nuclear power plants,and it is continuously consumed in a high neutron flux environment. The mass ratio of ^(107)Ag in the Ag–In–Cd control rod is 41.44%. To accurately calculate the consumption value of the control rod, a reliable neutron reaction cross section of the ^(107)Ag is required. Meanwhile,^(107)Ag is also an important weak r nucleus. Thus, the cross sections for neutron induced interactions with ^(107)Ag are very important both in nuclear energy and nuclear astrophysics. The(n, γ) cross section of ^(107)Ag has been measured in the energy range of 1–60 eV using a back streaming white neutron beam line at China spallation neutron source. The resonance parameters are extracted by an R-matrix code. All the cross section of ^(107)Ag and resonance parameters are given in this paper as datasets. The datasets are openly available at http://www.doi.org/10.11922/sciencedb.j00113.00010.展开更多
Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such ...Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such reactions,using eight laser beams with the third harmonic impacting on a deuterated polyethylene target at the ShenGuang-II Upgrade laser facility.This work focused on the application of range-filter(RF)spectrometers,assembled from a 70 lm aluminum filter and two CR-39 nuclear track detectors,to measure the yields of primary DD-protons.Based on the track diameter calibration results of 3 MeV protons used to diagnose the tracks on the RF spectrometers,an approximate primary DD-proton yield of(8.5±1.7)×10^6 was obtained,consistent with the yields from similar laser facilities worldwide.This indicates that the RF spectrometer is an effective way to measure primary DD-protons.However,due to the low yields of D^3He-protons and its small track diameter,CR-39 detectors were unable to distinguish it from the background spots.Using other accurate detectors may help to measure these rare events.展开更多
The^(74)Se is one of 35 p-nuclei,and^(82)Se is a r-process only nucleus,and their(n,γ)cross sections are vital input parameters for nuclear astrophysics reaction network calculations.The neutron capture cross section...The^(74)Se is one of 35 p-nuclei,and^(82)Se is a r-process only nucleus,and their(n,γ)cross sections are vital input parameters for nuclear astrophysics reaction network calculations.The neutron capture cross section in the resonance range of isotopes and even natural selenium samples has not been measured.Promptγ-rays originating from neutron-induced capture events were detected by four C_(6)D_(6) liquid scintillator detectors at the Back-n facility of China Spallation Neutron Source(CSNS).The pulse height weighting technique(PHWT)was used to analyze the data in the 1 e V to 100 ke V region.The deduced neutron capture cross section was compared with ENDF/B-VIII.0,JEFF-3.2,and JENDL-4.0,and some differences were found.Resonance parameters were extracted by the R-matrix code SAMMY in the 1 e V-1 ke V region.All the cross sections ofnatSe and resonance parameters are given in the datasets.The datasets are openly available at http://www.doi.org/10.11922/sciencedb.j00113.00019.展开更多
基金supported by National key research and development program(No.2022YFA1602404)the National Natural Science Foundation of China(Nos.12388102,12275338,12005280)the Key Laboratory of Nuclear Data foundation(No.JCKY2022201C152)。
文摘This study investigates photonuclear reaction(γ,n)cross-sections using Bayesian neural network(BNN)analysis.After determining the optimal network architecture,which features two hidden layers,each with 50 hidden nodes,training was conducted for 30,000 iterations to ensure comprehensive data capture.By analyzing the distribution of absolute errors positively correlated with the cross-section for the isotope 159Tb,as well as the relative errors unrelated to the cross-section,we confirmed that the network effectively captured the data features without overfitting.Comparison with the TENDL-2021 Database demonstrated the BNN's reliability in fitting photonuclear cross-sections with lower average errors.The predictions for nuclei with single and double giant dipole resonance peak cross-sections,the accurate determination of the photoneutron reaction threshold in the low-energy region,and the precise description of trends in the high-energy cross-sections further demonstrate the network's generalization ability on the validation set.This can be attributed to the consistency of the training data.By using consistent training sets from different laboratories,Bayesian neural networks can predict nearby unknown cross-sections based on existing laboratory data,thereby estimating the potential differences between other laboratories'existing data and their own measurement results.Experimental measurements of photonuclear reactions on the newly constructed SLEGS beamline will contribute to clarifying the differences in cross-sections within the existing data.
基金supported by the National Key Research and Development Program(Nos.2023YFA1606901 and 2022YFA1602400)National Natural Science Foundation of China(Nos.U2230133,12275338,and 12388102)Open Fund of the CIAE Key Laboratory of Nuclear Data(No.JCKY2022201C152).
文摘We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between existing measurements and evaluations of this cross-section.Using an unfolding iteration method,^(63)Cu(γ,n)data were obtained with an uncertainty of less than 4%,and the inconsistencies between the available experimental data were discussed.Theγ-ray strength function of^(63)Cu(γ,n)was successfully extracted as an experimental constraint.We further calculated the cross-section of the radiative neutron capture reaction^(62)Cu(n,γ)using the TALYS code.Our calculation method enables the extraction of(n,γ)cross-sections for unstable nuclides.
基金supported by the National key R&D program(Nos.2023YFA1606901 and 2022YFA1602404)the National Natural Science Foundation of China(Nos.12375123 and 12388102)the Natural Science Foundation of Henan Province(No.242300422048)。
文摘The accurate photoneutron cross section of the^(27)Al nucleus has a significant impact on resolving differences in existing experimental data and enhancing the precision of nuclear reaction rate calculations for^(26)Al in nuclear astrophysics.The photoneutron cross sections for the^(27)Al(γ,n)^(26)Al reaction,within the neutron separation energy range of 13.2-21.7 MeV,were meticulously measured using a new flat efficiency detector array at the Shanghai Laser-Electron Gamma Source.The uncertainty of the data was controlled to below 4%throughout the process,and inconsistencies between the present data and existing data from different gamma sources,as well as the TENDL-2021 data,are discussed in detail.These discussions provide a valuable reference for addressing discrepancies in the^(27)Al(γ,n)^(26)Al cross-section data and improving related theoretical calculations.
文摘Correction to:Nuclear Science and Techniques(2025)36:66 https://doi.org/10.1007/s41365-025-01662-y.In this article,the author’s name Hui-Ling Wei was incorrectly written as Hui-Ling We.The original article has been corrected.
基金supported by the National Key Research and Development program(Nos.2022YFA1602404,2023YFA1606901)the National Natural Science Foundation of China(Nos.12275338,12388102,and U2441221)the Key Laboratory of Nuclear Data foundation(JCKY2022201C152)xm。
文摘Energy-variable gamma-rays are produced in Laser Compton Slant-scattering mode at the Shanghai Laser Electron Gamma Source(SLEGS),a beamline of the Shanghai Synchrotron Radiation Facility(also called Shanghai Light Source).Based on the SLEGS energy-variable gamma-ray beam,a positron generation system composed of a gamma-ray-driven section,positron-generated target,magnet separation section and positron experimental section was designed for SLEGS.Geant4 simulation results show that the energy tunable positron beam in the energy range of 1–12.9 MeV with a flux of 3.7×10^(4)–6.9×10^(5)e^(+)∕s can be produced in this positron generation system.The positron beam generation and separation provide favorable experimental conditions for conducting nondestructive positron testing on SLEGS in the future.The positron generation system is currently under construction and will be completed in 2025.
基金supported by National Key Research and Development Program of China(Nos.2022YFA1602404 and 2023YFA1606901)the National Natural Science Foundation of China(Nos.12275338,12388102,and U2441221)the Key Laboratory of Nuclear Data Foundation(JCKY2022201C152).
文摘Photonuclear data are increasingly used in fundamental nuclear research and technological applications.These data are generated using advanced γ-ray sources.The Shanghai laser electron gamma source(SLEGS)is a new laser Compton scattering γ-ray source at the Shanghai Synchrotron Radiation Facility.It delivers energy-tunable,quasi-monoenergetic gamma beams for high-precision photonuclear measurements.This paper presents the flat-efficiency detector(FED)array at SLEGS and its application in photoneutron cross-section measurements.Systematic uncertainties of the FED array were determined to be 3.02%through calibration with a ^(252)Cf neutron source.Using ^(197)Au and ^(159)Tb as representative nuclei,we demonstrate the format and processing methodology for raw photoneutron data.The results validate SLEGS’capability for high-precision photoneutron measurements.
基金supported by National Key Research and Development Program of China(Nos.2022YFA1602404 and2023YFA1606901)the National Natural Science Foundation of China(Nos.12275338,12388102,and U2441221)the Key Laboratory of Nuclear Data Foundation(JCKY2022201C152)。
文摘The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analysis platform,including online activation and offiine low background High-Purity Germanium(HPGe)detector measurement systems,as an alternative to direct measurement methods and low-throughput cross-tests.Owing to short half-lives spanning from minutes to days and characteristics such as ease of fabrication,cost-effectiveness,and stability,gold(~(197)Au)and zinc(~(64)Zn)emerge as favorable activation targets for theγ-ray beam flux monitor.Notably,they exhibit a multitude of advantages in monitoring theγ-ray beam flux,typically 10^(5)photons/s,with energies of 13.16 Me V to 19.08 Me V using a 3 mm coarse collimator.In particular,high-fluxγ-ray beam experiments can be conducted effectively.
基金supported by the Natural Science Foundation of Hunan Province,China(No.2025JJ60020)the National Key Research and Development Program(No.2022YFA1603300)+1 种基金National Natural Science Foundation of China(Nos.12275338 and 12388102)China Institute of Atomic Energy(No.CIAE-FWGKJT-23-0820).
文摘^(147,149)Sm are slow neutron capture(s-process)nuclides in nuclear astrophysics,whose(n,γ)cross sections are important input parameters in nucleosynthesis network calculations in the samarium(Sm)region.In addition,^(149)Sm is a fission product of ^(235)U with a 1%yield,and its neutron resonance parameters play a critical role in reactor neutronics.According to the available nuclear evaluation databases,a significant disagreement has been observed in the resonance peaks of the ^(147,149)Sm(n,γ)crosssectional data within the energy range of 20-300 eV.In this study,tutron capture cross section of a natural samarium target was measured at the back-streaming white neutron beamline of the China Spallation Neutron Source.The neutron capture yield was obtained,and the neutron resonance parameters for ^(147)Sm at 107.0,139.4,241.7,and 257.3 eV and ^(149)Sm at 23.2,24.6,26.1,28.0,51.5,75.2,90.9,125.3,and 248.4 eV were extracted using the SAMMY code based on R-matrix theory.For the parameters Γ_(n) and Γ_(γ) in these energies of ^(147,149)Sm,the percentages consistent with the results of the CENDL-3.2,ENDF/B-Ⅷ.0,JEFF-3.3,JENDL-4.0,and BROND-3.1 database are 27%,65%,65%,42%,and 58%,respectively.However,27% of the results were inconsistent with those of the major libraries.This work enriches experimental data of the ^(147,149)Sm neutron capture resonance and helps clarify the differences between different evaluation databases at the above energies.
文摘The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear structure, which is in extensive demand in fields such as nuclear astrophysics, nuclear cluster structure, polarization physics, and nuclear energy. The beamline is based on the inverse Compton scattering of 10640 nm photons on 3.5 GeV electrons and a gamma source with variable energy by changing the scattering angle from 20° to 160°. γ rays of 0.25-21.1 MeV can be extracted by the scheme consisting of the interaction chamber, coarse collimator, fine collimator, and attenuator. The maximum photon flux for 180° is approximately 10~7 photons/s at the target at 21.7 MeV, with a 3-mm-diameter beam. The beamline was equipped with four types of spectrometers for experiments in( γ,γ'),( γ,n),( γ,p), and( γ,α). At present, Nuclear Resonance Fluorescence(NRF) spectrometry, Flat-Efficiency neutron Detector(FED) spectrometry, neutron Time-Of-Flight(TOF) spectrometry, and Light-Charged Particle(LCP) spectrometry methods have been developed.
基金supported by the National Natural Science Foundation of China(Nos.11875311,11905274,12005280)the Chinese Academy of Sciences President’s International Fellowship Initiative(No.2021VMA0025).
文摘The Shanghai Laser Electron Gamma Source(SLEGS)is a powerful gamma source that provides MeV gamma-ray beams for nuclear science and technology.It was developed as one of the 16 beamline stations in the Phase Ⅱ Project of the Shanghai Synchrotron Radiation Facility.The slant-scattering mode is for the first time systematically employed in laser Compton scattering at SLEGS to produce energy-tunable quasi-monoenergetic gamma-ray beams.The SLEGS officially completed its commissioning from July to December 2021.Gamma rays in the energy range of 0.25-21.7 MeV with a flux of 2.1×10^(4)-1.2×10^(7) photons/s and an energy spread of 2-15% were produced during the test.This paper reports the results from commissioning the SLEGS beamline.
基金supported by the National Natural Science Foundation of China (Nos.12275338,12005280,11905274 and 11875311)the Key Laboratory of Nuclear Data foundation (JCKY2022201C152)+1 种基金National key research and development program (No.2022YFA1602404)the Strategic Priority Research Program of the CAS (No.XDB34030000).
文摘The Shanghai laser electron gamma source(SLEGS)is a powerful tool for exploring photonuclear physics,such as giant dipole resonance(GDR)and pygmy dipole resonance,which are the main mechanisms of collective nuclear motion.The goal of the SLEGS neutron time-of-flight(TOF)spectrometer is to measure GDR and specific nuclear structures in the energy region above the neutron threshold.The SLEGS TOF spectrometer was designed to hold 20 sets of EJ301 and LaBr3 detectors.Geant4 was used to simulate the efficiency of each detector and the entire spectrometer,which provides a reference for the selection of detectors and layout of the SLEGS TOF spectrometer.Under the events of 208Pb,implementations of coincidence and time-of-flight technology for complex experiments are available;thus,and neutron decay events can be separated.The performance of SLEGS TOF spectrometer was systematically evaluated using offline experiments,in which the time resolution reached approximately 0.9 ns.
基金supported by the National Natural Science Foundation of China(Nos.11875311,11905274,11705156,and 11605097)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB34030000)。
文摘The neutron capture cross section of 197 Au was measured using the time-of-flight(TOF)technique at the Back-n facility of the China Spallation Neutron Source(CSNS)in the 1 eV to 100 keV range.Prompt c-rays originating from neutron-induced capture events were detected by four C_(6)D_(6) liquid scintillator detectors.Pulse height weighting technology(PHWT)was used to analyze the data.The results are in good agreement with ENDF/B-VIII.0,CENDL-3.1,and other evaluated libraries in the resonance region,and in agreement with both n TOF and GELINA experimental data in the 5–100 keV range.Finally,the resonance peaks in the energy range from 1eV to 1 keV were fitted by the SAMMY R-matrix code.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11875311, 11905274, 1705156, U2032146, 11865010, 11765015, and 1160509)the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2019JQ01 and 2018MS01009)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34030000)。
文摘Silver indium cadmium(Ag–In–Cd) control rod is widely used in pressurized water reactor nuclear power plants,and it is continuously consumed in a high neutron flux environment. The mass ratio of ^(107)Ag in the Ag–In–Cd control rod is 41.44%. To accurately calculate the consumption value of the control rod, a reliable neutron reaction cross section of the ^(107)Ag is required. Meanwhile,^(107)Ag is also an important weak r nucleus. Thus, the cross sections for neutron induced interactions with ^(107)Ag are very important both in nuclear energy and nuclear astrophysics. The(n, γ) cross section of ^(107)Ag has been measured in the energy range of 1–60 eV using a back streaming white neutron beam line at China spallation neutron source. The resonance parameters are extracted by an R-matrix code. All the cross section of ^(107)Ag and resonance parameters are given in this paper as datasets. The datasets are openly available at http://www.doi.org/10.11922/sciencedb.j00113.00010.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB160203)the National Natural Science Foundation of China(Nos.11875311 and 11421505).
文摘Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such reactions,using eight laser beams with the third harmonic impacting on a deuterated polyethylene target at the ShenGuang-II Upgrade laser facility.This work focused on the application of range-filter(RF)spectrometers,assembled from a 70 lm aluminum filter and two CR-39 nuclear track detectors,to measure the yields of primary DD-protons.Based on the track diameter calibration results of 3 MeV protons used to diagnose the tracks on the RF spectrometers,an approximate primary DD-proton yield of(8.5±1.7)×10^6 was obtained,consistent with the yields from similar laser facilities worldwide.This indicates that the RF spectrometer is an effective way to measure primary DD-protons.However,due to the low yields of D^3He-protons and its small track diameter,CR-39 detectors were unable to distinguish it from the background spots.Using other accurate detectors may help to measure these rare events.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875311,11905274,11705156,11605097,and U2032146)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB34030000)。
文摘The^(74)Se is one of 35 p-nuclei,and^(82)Se is a r-process only nucleus,and their(n,γ)cross sections are vital input parameters for nuclear astrophysics reaction network calculations.The neutron capture cross section in the resonance range of isotopes and even natural selenium samples has not been measured.Promptγ-rays originating from neutron-induced capture events were detected by four C_(6)D_(6) liquid scintillator detectors at the Back-n facility of China Spallation Neutron Source(CSNS).The pulse height weighting technique(PHWT)was used to analyze the data in the 1 e V to 100 ke V region.The deduced neutron capture cross section was compared with ENDF/B-VIII.0,JEFF-3.2,and JENDL-4.0,and some differences were found.Resonance parameters were extracted by the R-matrix code SAMMY in the 1 e V-1 ke V region.All the cross sections ofnatSe and resonance parameters are given in the datasets.The datasets are openly available at http://www.doi.org/10.11922/sciencedb.j00113.00019.