AIM: Signal transducers and activators of transcription (STATs) are a family of transcription factors activated in response to cytokines and growth factors. Constitutive activation of Stat3 has been observed in a grow...AIM: Signal transducers and activators of transcription (STATs) are a family of transcription factors activated in response to cytokines and growth factors. Constitutive activation of Stat3 has been observed in a growing number of tumor-derived cell lines, as well as tumor specimens from human cancers. The purpose of this study was to investigate the expression of p-Stat3, activated form of Stat3, and its downstream mediators including cyclin D1 and Bcl-XL in colorectal carcinoma (CRC), and to explore the possible mechanism of Stat3 signaling pathway in the tumorigenesis of colorectal carcinoma. METHODS: Tissue samples from 45 patients of primary colorectal carcinoma were selected for studying Stat3 signaling pathway protein expression. Western blot analysis was used to measure the expression of p-Stat3, cyclin D1, and Bcl-xu proteins in colorectal carcinomas. Furthermore, the expression patterns of these proteins were analyzed for their distribution at the cellular level by immunohistochemical staining of the tissues. RESULTS: Protein levels of p-Stat3, cyclin D1, and Bcl-XL were increased in colorectal carcinomas compared with adjacent normal mucosae (P<0.05). Elevated levels of pStat3 were correlated with the nodal metastasis and the stage (P<0.05). Overexpression of cyclin D1 was associated with the nodal metastasis (P<0.05). There was also a significant correlation between the expressions of p-Stat3 and cyclin D1 (r=0.382, P<0.05). CONCLUSION: Constitutive activation of Stat3 may play an important role in the tumorigenesis of colorectal carcinoma, and the detailed mechanism of Stat3 signaling pathway in CRC deserves further investigation.展开更多
AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological p...AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological parameters. METHODS: Western blot was used to measure the expression of extracellular signal-regulated kinase (ERK)-1, ERK-2, ERK-3, p38 and mitogen or ERK activated protein kinaseMEK-1 proteins in surgically resected gastric carcinoma, adjacent normal mucosa and metastatic lymph nodes from 42 patients. Immunohistochemistry was employed for their localization. RESULTS: Compared with normal tissues, the protein levels of ERK-1 (integral optical density value 159 526?5 760 vs 122 807±65 515, P= 0.001), ERK-2 (168 471±95 051 vs 120 469±72 874, P<0.001), ERK-3 (118 651±71 513 vs 70 934±68 058,P<0.001), P38 (104 776±51 650 vs 82 930±40 392, P= 0.048) and MEK-1 (116 486±45 725 vs 101 434±49 387, P = 0.027) were increased in gastric cancer tissues. Overexpression of ERK-3 was correlated to TNM staging [average ratio of integral optic density (IOD)tumor: IODnormal in TNM I, II, III, IV tumors was 1.43±0.34, 5.08±3.74, 4.99±1.08, 1.44±1.02, n = 42, P= 0.023] and serosa invasion (4.31±4.34 vs 2.00±2.03, P = 0.037). In poorly differentiated cancers (n = 33), the protein levels of ERK-1 and ERK-2 in stage III and IV tumors were higher than those in stage I and II tumors (2.64+3.01 vs 1.01±0.33, P= 0.022; 2.05±1.54 vs1.24±0.40, P= 0.030). Gastric cancer tissues with either lymph node involvement (2.49±2.91 vs1.03±0.36, P= 0.023; 1.98±1.49vs1.24±0.44, P= 0.036) or serosa invasion (2.39±2.82 vs 1.01±0.35, P= 0.022; 1.95±1.44 vs1.14±0.36, P=0.015) expressed higher protein levels of ERK-1 and ERK-2. In Borrmann II tumors, expression of ERK-2 and ERK-3 was increased compared with Borrmann III tumors (2.57±1.86 vs1.23±0.60, P= 0.022; 5.50±5.05 vs1.83±1.21, P= 0.014). Borrmann IV tumors expressed higher p38 protein levels. No statistically significant difference in expression of MAPKs was found when stratified to tumor size or histological grade (P>0.05). Protein levels of ERK-2, ERK-3 and MEK-1 in metastatic lymph nodes were 2-7 folds higher than those in adjacent normal mucosa. The immunohistochemistry demonstrated that ERK-1, ERK-2, ERK-3, p38 and MEK-1 proteins were mainly localized in cytoplasm. The expression of MEK-1 in gastric cancer cells metastasized to lymph nodes was higher than that of the primary site. CONCLUSION: MAPKs, particularly ERK subclass are overexpressed in the majority of gastric cancers. Overexpression of ERKs is correlated to TNM staging, serosa invasion, and lymph node involvement. The overexpression of p38 most likely plays a prominent role in certain morphological subtypes of gastric cancers. MEK-1 is also overexpressed in gastric cancer, particularly in metastatic lymph nodes. Upregulation of MARK signal transduction pathways may play an important role in tumorigenesis and metastatic potential of gastric cancer.展开更多
基金Supported by the National Natural Science Foundation of China,No.30271269
文摘AIM: Signal transducers and activators of transcription (STATs) are a family of transcription factors activated in response to cytokines and growth factors. Constitutive activation of Stat3 has been observed in a growing number of tumor-derived cell lines, as well as tumor specimens from human cancers. The purpose of this study was to investigate the expression of p-Stat3, activated form of Stat3, and its downstream mediators including cyclin D1 and Bcl-XL in colorectal carcinoma (CRC), and to explore the possible mechanism of Stat3 signaling pathway in the tumorigenesis of colorectal carcinoma. METHODS: Tissue samples from 45 patients of primary colorectal carcinoma were selected for studying Stat3 signaling pathway protein expression. Western blot analysis was used to measure the expression of p-Stat3, cyclin D1, and Bcl-xu proteins in colorectal carcinomas. Furthermore, the expression patterns of these proteins were analyzed for their distribution at the cellular level by immunohistochemical staining of the tissues. RESULTS: Protein levels of p-Stat3, cyclin D1, and Bcl-XL were increased in colorectal carcinomas compared with adjacent normal mucosae (P<0.05). Elevated levels of pStat3 were correlated with the nodal metastasis and the stage (P<0.05). Overexpression of cyclin D1 was associated with the nodal metastasis (P<0.05). There was also a significant correlation between the expressions of p-Stat3 and cyclin D1 (r=0.382, P<0.05). CONCLUSION: Constitutive activation of Stat3 may play an important role in the tumorigenesis of colorectal carcinoma, and the detailed mechanism of Stat3 signaling pathway in CRC deserves further investigation.
基金Supported by Technology Foundation of Ministry of Education, China
文摘AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological parameters. METHODS: Western blot was used to measure the expression of extracellular signal-regulated kinase (ERK)-1, ERK-2, ERK-3, p38 and mitogen or ERK activated protein kinaseMEK-1 proteins in surgically resected gastric carcinoma, adjacent normal mucosa and metastatic lymph nodes from 42 patients. Immunohistochemistry was employed for their localization. RESULTS: Compared with normal tissues, the protein levels of ERK-1 (integral optical density value 159 526?5 760 vs 122 807±65 515, P= 0.001), ERK-2 (168 471±95 051 vs 120 469±72 874, P<0.001), ERK-3 (118 651±71 513 vs 70 934±68 058,P<0.001), P38 (104 776±51 650 vs 82 930±40 392, P= 0.048) and MEK-1 (116 486±45 725 vs 101 434±49 387, P = 0.027) were increased in gastric cancer tissues. Overexpression of ERK-3 was correlated to TNM staging [average ratio of integral optic density (IOD)tumor: IODnormal in TNM I, II, III, IV tumors was 1.43±0.34, 5.08±3.74, 4.99±1.08, 1.44±1.02, n = 42, P= 0.023] and serosa invasion (4.31±4.34 vs 2.00±2.03, P = 0.037). In poorly differentiated cancers (n = 33), the protein levels of ERK-1 and ERK-2 in stage III and IV tumors were higher than those in stage I and II tumors (2.64+3.01 vs 1.01±0.33, P= 0.022; 2.05±1.54 vs1.24±0.40, P= 0.030). Gastric cancer tissues with either lymph node involvement (2.49±2.91 vs1.03±0.36, P= 0.023; 1.98±1.49vs1.24±0.44, P= 0.036) or serosa invasion (2.39±2.82 vs 1.01±0.35, P= 0.022; 1.95±1.44 vs1.14±0.36, P=0.015) expressed higher protein levels of ERK-1 and ERK-2. In Borrmann II tumors, expression of ERK-2 and ERK-3 was increased compared with Borrmann III tumors (2.57±1.86 vs1.23±0.60, P= 0.022; 5.50±5.05 vs1.83±1.21, P= 0.014). Borrmann IV tumors expressed higher p38 protein levels. No statistically significant difference in expression of MAPKs was found when stratified to tumor size or histological grade (P>0.05). Protein levels of ERK-2, ERK-3 and MEK-1 in metastatic lymph nodes were 2-7 folds higher than those in adjacent normal mucosa. The immunohistochemistry demonstrated that ERK-1, ERK-2, ERK-3, p38 and MEK-1 proteins were mainly localized in cytoplasm. The expression of MEK-1 in gastric cancer cells metastasized to lymph nodes was higher than that of the primary site. CONCLUSION: MAPKs, particularly ERK subclass are overexpressed in the majority of gastric cancers. Overexpression of ERKs is correlated to TNM staging, serosa invasion, and lymph node involvement. The overexpression of p38 most likely plays a prominent role in certain morphological subtypes of gastric cancers. MEK-1 is also overexpressed in gastric cancer, particularly in metastatic lymph nodes. Upregulation of MARK signal transduction pathways may play an important role in tumorigenesis and metastatic potential of gastric cancer.