A phenylphenothiazine anchored Tb(Ⅲ)-cyclen complex PTP-Cy-Tb for hypochlorite ion(ClO^(-))detection has been designed and prepared.PTP-Cy-Tb shows a weak Tb-based emission with AIE-characteristics in aqueous solutio...A phenylphenothiazine anchored Tb(Ⅲ)-cyclen complex PTP-Cy-Tb for hypochlorite ion(ClO^(-))detection has been designed and prepared.PTP-Cy-Tb shows a weak Tb-based emission with AIE-characteristics in aqueous solutions.After addition of ClO^(-),the fluorescence of PTP-Cy-Tb gives a large enhancement for oxidization the thioether to sulfoxide group.The detection limit of PTP-Cy-Tb toward ClO^(-)is as low as 8.85 nmol/L.The sensing mechanism was detailedly investigated by time of flight mass spectrometer(TOF-MS),Fourier transform infrared spectroscopy(FT-IR)and density functional theory(DFT)calculation.In addition,PTP-Cy-Tb has been successfully used for on-site and real-time detection of ClO^(-)in real water samples by using the smartphone-based visualization method and test strips.展开更多
基金supported by the National Nature Science Foundation of China(Nos.22061028 and 22361028)Jiangxi Provincial Natural Science Foundation(No.20224ACB203012)。
文摘A phenylphenothiazine anchored Tb(Ⅲ)-cyclen complex PTP-Cy-Tb for hypochlorite ion(ClO^(-))detection has been designed and prepared.PTP-Cy-Tb shows a weak Tb-based emission with AIE-characteristics in aqueous solutions.After addition of ClO^(-),the fluorescence of PTP-Cy-Tb gives a large enhancement for oxidization the thioether to sulfoxide group.The detection limit of PTP-Cy-Tb toward ClO^(-)is as low as 8.85 nmol/L.The sensing mechanism was detailedly investigated by time of flight mass spectrometer(TOF-MS),Fourier transform infrared spectroscopy(FT-IR)and density functional theory(DFT)calculation.In addition,PTP-Cy-Tb has been successfully used for on-site and real-time detection of ClO^(-)in real water samples by using the smartphone-based visualization method and test strips.