Few-shot learning has emerged as a crucial technique for coral species classification,addressing the challenge of limited labeled data in underwater environments.This study introduces an optimized few-shot learning mo...Few-shot learning has emerged as a crucial technique for coral species classification,addressing the challenge of limited labeled data in underwater environments.This study introduces an optimized few-shot learning model that enhances classification accuracy while minimizing reliance on extensive data collection.The proposed model integrates a hybrid similarity measure combining Euclidean distance and cosine similarity,effectively capturing both feature magnitude and directional relationships.This approach achieves a notable accuracy of 71.8%under a 5-way 5-shot evaluation,outperforming state-of-the-art models such as Prototypical Networks,FEAT,and ESPT by up to 10%.Notably,the model demonstrates high precision in classifying Siderastreidae(87.52%)and Fungiidae(88.95%),underscoring its effectiveness in distinguishing subtle morphological differences.To further enhance performance,we incorporate a self-supervised learning mechanism based on contrastive learning,enabling the model to extract robust representations by leveraging local structural patterns in corals.This enhancement significantly improves classification accuracy,particularly for species with high intra-class variation,leading to an overall accuracy of 76.52%under a 5-way 10-shot evaluation.Additionally,the model exploits the repetitive structures inherent in corals,introducing a local feature aggregation strategy that refines classification through spatial information integration.Beyond its technical contributions,this study presents a scalable and efficient approach for automated coral reef monitoring,reducing annotation costs while maintaining high classification accuracy.By improving few-shot learning performance in underwater environments,our model enhances monitoring accuracy by up to 15%compared to traditional methods,offering a practical solution for large-scale coral conservation efforts.展开更多
基金funded by theNational Science and TechnologyCouncil(NSTC),Taiwan,under grant numbers NSTC 112-2634-F-019-001 and NSTC 113-2634-F-A49-007.
文摘Few-shot learning has emerged as a crucial technique for coral species classification,addressing the challenge of limited labeled data in underwater environments.This study introduces an optimized few-shot learning model that enhances classification accuracy while minimizing reliance on extensive data collection.The proposed model integrates a hybrid similarity measure combining Euclidean distance and cosine similarity,effectively capturing both feature magnitude and directional relationships.This approach achieves a notable accuracy of 71.8%under a 5-way 5-shot evaluation,outperforming state-of-the-art models such as Prototypical Networks,FEAT,and ESPT by up to 10%.Notably,the model demonstrates high precision in classifying Siderastreidae(87.52%)and Fungiidae(88.95%),underscoring its effectiveness in distinguishing subtle morphological differences.To further enhance performance,we incorporate a self-supervised learning mechanism based on contrastive learning,enabling the model to extract robust representations by leveraging local structural patterns in corals.This enhancement significantly improves classification accuracy,particularly for species with high intra-class variation,leading to an overall accuracy of 76.52%under a 5-way 10-shot evaluation.Additionally,the model exploits the repetitive structures inherent in corals,introducing a local feature aggregation strategy that refines classification through spatial information integration.Beyond its technical contributions,this study presents a scalable and efficient approach for automated coral reef monitoring,reducing annotation costs while maintaining high classification accuracy.By improving few-shot learning performance in underwater environments,our model enhances monitoring accuracy by up to 15%compared to traditional methods,offering a practical solution for large-scale coral conservation efforts.