In several previous studies,it was reported that a supported pipe with small geometric imperfections would lose stability when the internal flow velocity became sufficiently high.Recently,however,it has become clear t...In several previous studies,it was reported that a supported pipe with small geometric imperfections would lose stability when the internal flow velocity became sufficiently high.Recently,however,it has become clear that this conclusion may be at best incomplete.A reevaluation of the problem is undertaken here by essentially considering the flow-induced static deformation of a pipe.With the aid of the absolute nodal coordinate formulation(ANCF)and the extended Lagrange equations for dynamical systems containing non-material volumes,the nonlinear governing equations of a pipe with three different geometric imperfections are introduced and formulated.Based on extensive numerical calculations,the static equilibrium configuration,the stability,and the nonlinear dynamics of the considered pipe system are determined and analyzed.The results show that for a supported pipe with the geometric imperfection of a half sinusoidal wave,the dynamical system could not lose stability even if the flow velocity reaches an extremely high value of 40.However,for a supported pipe with the geometric imperfection of one or one and a half sinusoidal waves,the first-mode buckling instability would take place at high flow velocity.Moreover,based on a further parametric analysis,the effects of the amplitude of the geometric imperfection and the aspect ratio of the pipe on the static deformation,the critical flow velocity for buckling instability,and the nonlinear responses of the supported pipes with geometric imperfections are analyzed.展开更多
Creatures with longer bodies in nature like snakes and eels moving in water commonly generate a large swaying of their bodies or tails,with the purpose of producing significant frictions and collisions between body an...Creatures with longer bodies in nature like snakes and eels moving in water commonly generate a large swaying of their bodies or tails,with the purpose of producing significant frictions and collisions between body and fluid to provide the power of consecutive forward force.This swaying can be idealized by considering oscillations of a soft beam immersed in water when waves of vibration travel down at a constant speed.The present study employs a kind of large deformations induced by nonlinear vibrations of a soft pipe conveying fluid to design an underwater bio-inspired snake robot that consists of a rigid head and a soft tail.When the head is fixed,experiments show that a second mode vibration of the tail in water occurs as the internal flow velocity is beyond a critical value.Then the corresponding theoretical model based on the absolute nodal coordinate formulation(ANCF)is established to describe nonlinear vibrations of the tail.As the head is free,the theoretical modeling is combined with the computational fluid dynamics(CFD)analysis to construct a fluid-structure interaction(FSI)simulation model.The swimming speed and swaying shape of the snake robot are obtained through the FSI simulation model.They are in good agreement with experimental results.Most importantly,it is demonstrated that the propulsion speed can be improved by 21%for the robot with vibrations of the tail compared with that without oscillations in the pure jet mode.This research provides a new thought to design driving devices by using nonlinear flow-induced vibrations.展开更多
Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortice...Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP,our group proposed a device using a direct current(DC)electric field to achieve continuous particle separation.In this paper,the influence of the Joule heating effect on the continuous separation of particles is analyzed.Results show that the Joule heating effect is caused by the local electric field,and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage.Moreover,a non-uniform temperature distribution exists in the channel due to the Joule heating effect,and the temperature is the highest at the midpoint of the modulating electrodes.The channel flux can be enhanced,and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect.In addition,the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect;and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect.The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux.Parameter optimization of the separation device,such as the convective heat transfer coefficient of the channel wall,the length of modulating electrode,and the width of the channel,is performed.展开更多
In microfluidic technology, dielectrophoresis(DEP) is commonly used to manipulate particles. In this work, the fluid–particle interactions in a microfluidic system are investigated numerically by a finite difference ...In microfluidic technology, dielectrophoresis(DEP) is commonly used to manipulate particles. In this work, the fluid–particle interactions in a microfluidic system are investigated numerically by a finite difference method(FDM) for electric field distribution and a lattice Boltzmann method(LBM) for the fluid flow. In this system, efficient particle manipulation may be realized by combining DEP and field-modulating vortex. The influence of the density(ρ_(p)), radius(γ), and initial position of the particle in the y direction(y_(p0)), and the slip velocity(u_(0)) on the particle manipulation are studied systematically. It is found that compared with the particle without action of DEP force, the particle subjected to a DEP force may be captured by the vortex over a wider range of parameters. In the y direction, as ρ_(p) or γ increases, the particle can be captured more easily by the vortex since it is subjected to a stronger DEP force. When u_(0) is low, particle is more likely to be captured due to the vortex–particle interaction. Furthermore, the flow field around the particle is analyzed to explore the underlying mechanism. The results obtained in the present study may provide theoretical support for engineering applications of field-controlled vortices to manipulate particles.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11972167,12072119)the Alexander von Humboldt Foundation。
文摘In several previous studies,it was reported that a supported pipe with small geometric imperfections would lose stability when the internal flow velocity became sufficiently high.Recently,however,it has become clear that this conclusion may be at best incomplete.A reevaluation of the problem is undertaken here by essentially considering the flow-induced static deformation of a pipe.With the aid of the absolute nodal coordinate formulation(ANCF)and the extended Lagrange equations for dynamical systems containing non-material volumes,the nonlinear governing equations of a pipe with three different geometric imperfections are introduced and formulated.Based on extensive numerical calculations,the static equilibrium configuration,the stability,and the nonlinear dynamics of the considered pipe system are determined and analyzed.The results show that for a supported pipe with the geometric imperfection of a half sinusoidal wave,the dynamical system could not lose stability even if the flow velocity reaches an extremely high value of 40.However,for a supported pipe with the geometric imperfection of one or one and a half sinusoidal waves,the first-mode buckling instability would take place at high flow velocity.Moreover,based on a further parametric analysis,the effects of the amplitude of the geometric imperfection and the aspect ratio of the pipe on the static deformation,the critical flow velocity for buckling instability,and the nonlinear responses of the supported pipes with geometric imperfections are analyzed.
基金the National Natural Science Foundation of China(No.12072119)。
文摘Creatures with longer bodies in nature like snakes and eels moving in water commonly generate a large swaying of their bodies or tails,with the purpose of producing significant frictions and collisions between body and fluid to provide the power of consecutive forward force.This swaying can be idealized by considering oscillations of a soft beam immersed in water when waves of vibration travel down at a constant speed.The present study employs a kind of large deformations induced by nonlinear vibrations of a soft pipe conveying fluid to design an underwater bio-inspired snake robot that consists of a rigid head and a soft tail.When the head is fixed,experiments show that a second mode vibration of the tail in water occurs as the internal flow velocity is beyond a critical value.Then the corresponding theoretical model based on the absolute nodal coordinate formulation(ANCF)is established to describe nonlinear vibrations of the tail.As the head is free,the theoretical modeling is combined with the computational fluid dynamics(CFD)analysis to construct a fluid-structure interaction(FSI)simulation model.The swimming speed and swaying shape of the snake robot are obtained through the FSI simulation model.They are in good agreement with experimental results.Most importantly,it is demonstrated that the propulsion speed can be improved by 21%for the robot with vibrations of the tail compared with that without oscillations in the pure jet mode.This research provides a new thought to design driving devices by using nonlinear flow-induced vibrations.
基金Project supported by the National Natural Science Foundation of China(Grant No.11572139).
文摘Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP,our group proposed a device using a direct current(DC)electric field to achieve continuous particle separation.In this paper,the influence of the Joule heating effect on the continuous separation of particles is analyzed.Results show that the Joule heating effect is caused by the local electric field,and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage.Moreover,a non-uniform temperature distribution exists in the channel due to the Joule heating effect,and the temperature is the highest at the midpoint of the modulating electrodes.The channel flux can be enhanced,and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect.In addition,the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect;and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect.The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux.Parameter optimization of the separation device,such as the convective heat transfer coefficient of the channel wall,the length of modulating electrode,and the width of the channel,is performed.
基金Project supported by the National Natural Science Foundation of China (Granmt Nos. 11572139, 11872187, and 12072125)。
文摘In microfluidic technology, dielectrophoresis(DEP) is commonly used to manipulate particles. In this work, the fluid–particle interactions in a microfluidic system are investigated numerically by a finite difference method(FDM) for electric field distribution and a lattice Boltzmann method(LBM) for the fluid flow. In this system, efficient particle manipulation may be realized by combining DEP and field-modulating vortex. The influence of the density(ρ_(p)), radius(γ), and initial position of the particle in the y direction(y_(p0)), and the slip velocity(u_(0)) on the particle manipulation are studied systematically. It is found that compared with the particle without action of DEP force, the particle subjected to a DEP force may be captured by the vortex over a wider range of parameters. In the y direction, as ρ_(p) or γ increases, the particle can be captured more easily by the vortex since it is subjected to a stronger DEP force. When u_(0) is low, particle is more likely to be captured due to the vortex–particle interaction. Furthermore, the flow field around the particle is analyzed to explore the underlying mechanism. The results obtained in the present study may provide theoretical support for engineering applications of field-controlled vortices to manipulate particles.