期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impact of severe plastic deformation on kinetics and thermodynamics of hydrogen storage in magnesium and its alloys 被引量:7
1
作者 Kaveh Edalati Etsuo Akiba +10 位作者 Walter J.Botta Yuri Estrin Ricardo Floriano Daniel Fruchart Thierry Grosdidier zenji horita Jacques Huot Hai-Wen Li Huai-Jun Lin Ádám Révész Michael J.Zehetbauer 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期221-239,共19页
Magnesium and its alloys are the most investigated materials for solid-state hydrogen storage in the form of metal hydrides,but there are still unresolved problems with the kinetics and thermodynamics of hydrogenation... Magnesium and its alloys are the most investigated materials for solid-state hydrogen storage in the form of metal hydrides,but there are still unresolved problems with the kinetics and thermodynamics of hydrogenation and dehydrogenation of this group of materials.Severe plastic deformation(SPD)methods,such as equal-channel angular pressing(ECAP),high-pressure torsion(HPT),intensive rolling,and fast forging,have been widely used to enhance the activation,air resistance,and hydrogenation/dehydrogenation kinetics of Mg-based hydrogen storage materials by introducing ultrafine/nanoscale grains and crystal lattice defects.These severely deformed materials,particularly in the presence of alloying additives or second-phase nanoparticles,can show not only fast hydrogen absorption/desorption kinetics but also good cycling stability.It was shown that some materials that are apparently inert to hydrogen can absorb hydrogen after SPD processing.Moreover,the SPD methods were effectively used for hydrogen binding-energy engineering and synthesizing new magnesium alloys with low thermodynamic stability for reversible low/room-temperature hydrogen storage,such as nanoglasses,high-entropy alloys,and metastable phases including the high-pressureγ-MgH2 polymorph.This work reviews recent advances in the development of Mg-based hydrogen storage materials by SPD processing and discusses their potential in future applications. 展开更多
关键词 Severe plastic deformation(SPD) Nanostructured materials Ultrafine-grained(UFG)materials Magnesium hydride(MgH_(2)) Magnesium-based alloys Hydrogen absorption Hydrogenation kinetics Hydrogen storage thermodynamics
原文传递
Effect of equal-channel angular pressing on pitting corrosion resistance of anodized aluminum-copper alloy 被引量:5
2
作者 In-Joon SON Hiroaki NAKANO +3 位作者 Satoshi OUE Shigeo KOBAYASHI Hisaaki FUKUSHIMA zenji horita 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第4期904-908,共5页
The effect of equal-channel angular pressing(ECAP) on the pitting corrosion resistance of anodized Al-Cu alloy was investigated by electrochemical techniques in a solution containing 0.2 mol/L AlCl3 and also by surfac... The effect of equal-channel angular pressing(ECAP) on the pitting corrosion resistance of anodized Al-Cu alloy was investigated by electrochemical techniques in a solution containing 0.2 mol/L AlCl3 and also by surface analysis.Anodizing was conducted for 20 min at 200 and 400 A/m2 in a solution containing 1.53 mol/L H2SO4 and 0.018 5 mol/L Al2(SO4)3·16H2O at 20 ℃.Anodized Al-Cu alloy was immediately dipped in boiling water for 20 min to seal the micro pores present in anodic oxide films.The time required before initiating pitting corrosion of anodized Al-Cu alloy is longer with ECAP than without,indicating that ECAP process improves the pitting corrosion resistance of anodized Al-Cu alloy.Second phase precipitates such as Si,Al-Cu-Mg and Al-Cu-Si-Fe-Mn intermetallic compounds are present in Al-Cu alloy and the size of these precipitates is greatly decreased by application of ECAP.Al-Cu-Mg intermetallic compounds are dissolved during anodization,whereas the precipitates composed of Si and Al-Cu-Si-Fe-Mn remain in anodic oxide films due to their more noble corrosion potential than Al.FE-SEM and EPMA observation reveal that the pitting corrosion of anodized Al-Cu alloy occurs preferentially around Al-Cu-Si-Fe-Mn intermetallic compounds,since the anodic oxide films are absent at the boundary between the normal oxide films and these impurity precipitates.The improvement of pitting corrosion resistance of anodized Al-Cu alloy processed by ECAP appears to be attributed to a decrease in the size of precipitates,which act as origins of pitting corrosion. 展开更多
关键词 铝铜合金 抗点蚀 挤压 转角 通道
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部