In this paper,an ab initio,local density functional(LDF)method was used to explore the relationship between the molecular properties of additives and the lubricating performance of aluminum rolling oil.The structural ...In this paper,an ab initio,local density functional(LDF)method was used to explore the relationship between the molecular properties of additives and the lubricating performance of aluminum rolling oil.The structural properties of butyl stearate,dodecanol,docosanol,and methyl dodecanoate were studied according to the density functional theory.The calculated data showed that the atoms in or around the functional groups might be likely the reacting sites.Because of the different functional groups and structure of ester and alcohol,two types of complex additives,dodecanol and butyl stearate,methyl dodecanoate and butyl stearate,respectively,were chosen for studying their tribological properties and performing aluminum cold rolling experiments.The test results agreed with the calculated results very well.The complex ester,viz.methyl dodecanoate and butyl stearate,had the best lubricating performance with a friction coefficient of 0.084 1 and a permissive-rolling thickness of 0.040 mm as compared with that of dodecanol-butyl stearate-base oil formulation.展开更多
The 2,5-bis(ethyldisulfanyl)-l,3,4-thiadiazole (T561), benzotriazole (BTA),1-N, N-bis (2-ethylhexyl) aminomethyl-4-methyl-lh-benzotriazole (IRGAMET39) and I-IN, N-bis (2-ethylhexyl) aminomethyl] methyl ben...The 2,5-bis(ethyldisulfanyl)-l,3,4-thiadiazole (T561), benzotriazole (BTA),1-N, N-bis (2-ethylhexyl) aminomethyl-4-methyl-lh-benzotriazole (IRGAMET39) and I-IN, N-bis (2-ethylhexyl) aminomethyl] methyl benzotriazole (TT- LX) have been evaluated as corrosion inhibitors used in rolling oil for cold rolling of copper foil. The MRS-10A four-ball friction and wear tests have been carried out to compare their tribological properties, and the lubricating performance of rolling oils has been studied through rolling experiments. The oil sample containing IRGAMET 39 has the same PB value as that one containing T561, with the coefficient of friction increased by 35.6% and wear scar diameter decreased by 4%. The minimum rolling gauge has been studied after rolling lubrication, but the results show that inhibitors have no effect on it. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analyses have indicated that the inhibitor is adsorbed on the copper surface to prevent copper from being corroded easily. In addition, the LEXT OLS4000 laser confocal microscopy has been used to observe the foil surface which shows that the streaks of foil surface are clear, the scratches are shallow and the surface failure is improved effectively.展开更多
Adsorption and inhibition behavior of 2,5-bis(ethyldisulfanyl)-1,3,4-thiadiazole(DMTDA) and N-((6-methyl-1H-benzo[d][1,2,3]triazol-1-yl)methyl)-N-octyloctan-1-amine(EAMBA) as corrosion inhibitors contained in copper f...Adsorption and inhibition behavior of 2,5-bis(ethyldisulfanyl)-1,3,4-thiadiazole(DMTDA) and N-((6-methyl-1H-benzo[d][1,2,3]triazol-1-yl)methyl)-N-octyloctan-1-amine(EAMBA) as corrosion inhibitors contained in copper foil rolling oil have been investigated using gravimetric and electrochemical techniques. Meanwhile, scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS) have been employed to observe the surface topography and analyze the components on copper foil. The results show that the rolling oil containing DMTDA and EAMBA can significantly decrease the dissolution rate and increase the inhibition efficiency of samples, especially in the case of best compounded rolling oil system. The SEM and EDS investigations also confirmed that the protection of the copper foil surface is achieved by strong adsorption of the molecules which can prevent copper from being corroded easily. Reactivity descriptors of the corrosion inhibitors have been calculated by the density functional theory(DFT) and the reactivity has been analyzed through the molecular orbital and Fukui indices. Active sites of inhibitor are mainly concentrated on the ring and the polar functional groups, and in the meanwhile, the distribution is helpful to form coordination and backbonding among molecules and then to form stable adsorption on the metal surface. And this work provides theoretical evidence for the selection of corrosion inhibitors contained in copper foil rolling oil.展开更多
基金the financial support of this study provided by the National Natural Science Foundation of China(No.51274037)the Cooperation Program between USTB and SINOPEC(No.112116)
文摘In this paper,an ab initio,local density functional(LDF)method was used to explore the relationship between the molecular properties of additives and the lubricating performance of aluminum rolling oil.The structural properties of butyl stearate,dodecanol,docosanol,and methyl dodecanoate were studied according to the density functional theory.The calculated data showed that the atoms in or around the functional groups might be likely the reacting sites.Because of the different functional groups and structure of ester and alcohol,two types of complex additives,dodecanol and butyl stearate,methyl dodecanoate and butyl stearate,respectively,were chosen for studying their tribological properties and performing aluminum cold rolling experiments.The test results agreed with the calculated results very well.The complex ester,viz.methyl dodecanoate and butyl stearate,had the best lubricating performance with a friction coefficient of 0.084 1 and a permissive-rolling thickness of 0.040 mm as compared with that of dodecanol-butyl stearate-base oil formulation.
基金financially supported by the National Natural Science Foundation of China (No.51274037)the Key Science and Technology Project of China (No.2011BAE23B00)the Cooperation Program between USTB and SINOPEC (No.112116)
文摘The 2,5-bis(ethyldisulfanyl)-l,3,4-thiadiazole (T561), benzotriazole (BTA),1-N, N-bis (2-ethylhexyl) aminomethyl-4-methyl-lh-benzotriazole (IRGAMET39) and I-IN, N-bis (2-ethylhexyl) aminomethyl] methyl benzotriazole (TT- LX) have been evaluated as corrosion inhibitors used in rolling oil for cold rolling of copper foil. The MRS-10A four-ball friction and wear tests have been carried out to compare their tribological properties, and the lubricating performance of rolling oils has been studied through rolling experiments. The oil sample containing IRGAMET 39 has the same PB value as that one containing T561, with the coefficient of friction increased by 35.6% and wear scar diameter decreased by 4%. The minimum rolling gauge has been studied after rolling lubrication, but the results show that inhibitors have no effect on it. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analyses have indicated that the inhibitor is adsorbed on the copper surface to prevent copper from being corroded easily. In addition, the LEXT OLS4000 laser confocal microscopy has been used to observe the foil surface which shows that the streaks of foil surface are clear, the scratches are shallow and the surface failure is improved effectively.
基金the financial assistance provided by the National Natural Science Foundation of China (No. 51474025)the Cooperation Program between USTB and SINOPEC (No.112116)
文摘Adsorption and inhibition behavior of 2,5-bis(ethyldisulfanyl)-1,3,4-thiadiazole(DMTDA) and N-((6-methyl-1H-benzo[d][1,2,3]triazol-1-yl)methyl)-N-octyloctan-1-amine(EAMBA) as corrosion inhibitors contained in copper foil rolling oil have been investigated using gravimetric and electrochemical techniques. Meanwhile, scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS) have been employed to observe the surface topography and analyze the components on copper foil. The results show that the rolling oil containing DMTDA and EAMBA can significantly decrease the dissolution rate and increase the inhibition efficiency of samples, especially in the case of best compounded rolling oil system. The SEM and EDS investigations also confirmed that the protection of the copper foil surface is achieved by strong adsorption of the molecules which can prevent copper from being corroded easily. Reactivity descriptors of the corrosion inhibitors have been calculated by the density functional theory(DFT) and the reactivity has been analyzed through the molecular orbital and Fukui indices. Active sites of inhibitor are mainly concentrated on the ring and the polar functional groups, and in the meanwhile, the distribution is helpful to form coordination and backbonding among molecules and then to form stable adsorption on the metal surface. And this work provides theoretical evidence for the selection of corrosion inhibitors contained in copper foil rolling oil.