Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p...Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.展开更多
With the increased penetration of renewable energy sources,the grid-forming(GFM)energy storage(ES)has been considered to engage in primary frequency regulation(PFR),often necessitating the use of a frequency deadband(...With the increased penetration of renewable energy sources,the grid-forming(GFM)energy storage(ES)has been considered to engage in primary frequency regulation(PFR),often necessitating the use of a frequency deadband(FDB)to prevent excessive battery charging cycling and mitigate frequency oscillations.Implementing the FDB is relatively straightforward in grid-following(GFL)control.However,implementing the FDB in GFM control presents a significant challenge since the inverter must abstain from providing active power at any frequency within the FDB.Therefore,in this paper,the performance of PFR control in the GFM-ES inverter is analyzed in detail first.Then,the FDB is implemented for GFM inverters with various types of synchronization methods,and the need for inertia response is also considered.Moreover,given the risk of oscillations near the FDB boundary,different FDB setting methods are proposed and examined,where an improved triangular hysteresis method is proposed to realize the fast response and enhanced stability.Finally,the simulation and experiment results are provided to verify the effectiveness of the above methods.展开更多
Immune checkpoint inhibitors(ICIs)have revolutionized cancer treatment for their unprecedented clinical efficacy.Signal regulatory proteinα(SIRPα)is a phagocytic checkpoint expressed on macrophages,dendritic cells,o...Immune checkpoint inhibitors(ICIs)have revolutionized cancer treatment for their unprecedented clinical efficacy.Signal regulatory proteinα(SIRPα)is a phagocytic checkpoint expressed on macrophages,dendritic cells,other myeloid cells.Cancer cells inhibit macrophage phagocytosis through the interaction of the CD47-SIRPαaxis.Disrupting the CD47-SIRPαaxis has therefore been a promising strategy in restoring the immune attack against cancer.Herein,we engineered cellular membrane nanovesicles(NVs)presenting SIRPαreceptors for phagocytosis checkpoint blockade to augment the antitumor immune response.Furthermore,zebularine(Zeb),an inhibitor of DNA methyltransferase,was encapsulated into SIRPαNVs to reprogram the immunosuppressive tumor microenvironment together with blockade of phagocytosis checkpoint.It is demonstrated that SIRPα@Zeb can improve tumor immunogenicity,the polarization of tumor-associated macrophages to the M1 phenotype,increase the infiltration of CD8^(+)T lymphocytes in tumors.The robust antitumor immune response induced by SIRPα@Zeb significantly suppressed tumor growth and extended mice-bearing melanoma xenograft survival.展开更多
Gas therapy(GT)exhibits great potential for clinical application due to its high therapeutic efficiency,low systemic side effects,and biosafety,thereinto,a multifunctional nanoplatform is generally needed for controll...Gas therapy(GT)exhibits great potential for clinical application due to its high therapeutic efficiency,low systemic side effects,and biosafety,thereinto,a multifunctional nanoplatform is generally needed for controllable gas release and precise delivery to tumor tissue.In this review,the recent development of multifunctional nanoplatforms for efficient tumor delivery of stimuliresponsive gas-releasing molecules(GRMs),which could be triggered by either exogenous physical or endogenous tumor microenvironment(TME)is summarized.The reported therapeutic gas molecules,including oxygen(O_(2)),hydrogen sulfide(H_(2)S),nitric oxide(NO),hydrogen(H_(2)),and carbon monoxide(CO),etc.,could directly influence or change the pathological status.Additionally,abundant nanocarriers have been employed for gas delivery into cancer region,such as mesoporous silica nanoparticles(MSNs),metal-organic frameworks(MOFs),two-dimensional(2D)nanomaterials,and liposomes,as well as nonnanocarriers including inorganic and organic nanoparticles.In the end,the outlooks of current challenges of GT and GRMs delivery nanoplatforms as well as the prospects of future clinical applications are proposed.展开更多
基金supported in part by the National Natural Science Foundation of China(51875261)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX21_3331)+1 种基金the Faculty of Agricultural Equipment of Jiangsu University(NZXB20210103)。
文摘Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.
基金supported by the Science and Technology of State Grid(No.4000-202432066A-1-1-Z)。
文摘With the increased penetration of renewable energy sources,the grid-forming(GFM)energy storage(ES)has been considered to engage in primary frequency regulation(PFR),often necessitating the use of a frequency deadband(FDB)to prevent excessive battery charging cycling and mitigate frequency oscillations.Implementing the FDB is relatively straightforward in grid-following(GFL)control.However,implementing the FDB in GFM control presents a significant challenge since the inverter must abstain from providing active power at any frequency within the FDB.Therefore,in this paper,the performance of PFR control in the GFM-ES inverter is analyzed in detail first.Then,the FDB is implemented for GFM inverters with various types of synchronization methods,and the need for inertia response is also considered.Moreover,given the risk of oscillations near the FDB boundary,different FDB setting methods are proposed and examined,where an improved triangular hysteresis method is proposed to realize the fast response and enhanced stability.Finally,the simulation and experiment results are provided to verify the effectiveness of the above methods.
基金National Key R&D Program of China(No.2021YFA0909900)Zhejiang Provincial Natural Science Foundation of China(No.LY23C100001)+2 种基金National Natural Science Foundation of China(Nos.51973214 and 51503003)Kunpeng Program from Zhejiang Province,Zhejiang University's start-up packages,Fundamental Research Funds for the Central Universities(No.2021FZZX001-46)the Starry Night Science Fund at Shanghai Institute for Advanced Study of Zhejiang University(No.SN-ZJU-SIAS-009).
文摘Immune checkpoint inhibitors(ICIs)have revolutionized cancer treatment for their unprecedented clinical efficacy.Signal regulatory proteinα(SIRPα)is a phagocytic checkpoint expressed on macrophages,dendritic cells,other myeloid cells.Cancer cells inhibit macrophage phagocytosis through the interaction of the CD47-SIRPαaxis.Disrupting the CD47-SIRPαaxis has therefore been a promising strategy in restoring the immune attack against cancer.Herein,we engineered cellular membrane nanovesicles(NVs)presenting SIRPαreceptors for phagocytosis checkpoint blockade to augment the antitumor immune response.Furthermore,zebularine(Zeb),an inhibitor of DNA methyltransferase,was encapsulated into SIRPαNVs to reprogram the immunosuppressive tumor microenvironment together with blockade of phagocytosis checkpoint.It is demonstrated that SIRPα@Zeb can improve tumor immunogenicity,the polarization of tumor-associated macrophages to the M1 phenotype,increase the infiltration of CD8^(+)T lymphocytes in tumors.The robust antitumor immune response induced by SIRPα@Zeb significantly suppressed tumor growth and extended mice-bearing melanoma xenograft survival.
基金supported by the National Key R&D Program of China(No.2021YFB3801001)the National Natural Science Foundation of China(Nos.32030061 and 81720108023)the Key Program for Basic Research of Shanghai(Nos.19JC1415600 and 21JC1406000).
文摘Gas therapy(GT)exhibits great potential for clinical application due to its high therapeutic efficiency,low systemic side effects,and biosafety,thereinto,a multifunctional nanoplatform is generally needed for controllable gas release and precise delivery to tumor tissue.In this review,the recent development of multifunctional nanoplatforms for efficient tumor delivery of stimuliresponsive gas-releasing molecules(GRMs),which could be triggered by either exogenous physical or endogenous tumor microenvironment(TME)is summarized.The reported therapeutic gas molecules,including oxygen(O_(2)),hydrogen sulfide(H_(2)S),nitric oxide(NO),hydrogen(H_(2)),and carbon monoxide(CO),etc.,could directly influence or change the pathological status.Additionally,abundant nanocarriers have been employed for gas delivery into cancer region,such as mesoporous silica nanoparticles(MSNs),metal-organic frameworks(MOFs),two-dimensional(2D)nanomaterials,and liposomes,as well as nonnanocarriers including inorganic and organic nanoparticles.In the end,the outlooks of current challenges of GT and GRMs delivery nanoplatforms as well as the prospects of future clinical applications are proposed.