Engineering construction actively occurs in coastal zones, and these areas have numerous potential geological hazard factors. Since 2009, the development of geological surveys in sea areas has promoted extensive geoph...Engineering construction actively occurs in coastal zones, and these areas have numerous potential geological hazard factors. Since 2009, the development of geological surveys in sea areas has promoted extensive geophysical surveys in Qingdao offshore. In the present study, the types and distribution of potential geological hazard factors were systematically revealed using sub-bottom profile data, side-scan sonar data, and single-channel seismic data, among others. Based on previous research findings, the potential geological hazard factors are classified, and control factors in Qingdao offshore are discussed. The research results show that the primary potential geological hazards include active faults, buried paleo channels, shallow gas, irregular bedrock, eroded gullies, estuary deltas, tidal sand ridges, and seawater intrusion. In addition, neotectonic movement, sea level changes and sedimentary dynamic processes were the main factors that affected the distribution of geological hazards in Qingdao offshore.展开更多
In recent years,development activities have had a significant impact on the environment of the Jiaozhou Bay,China.To ensure the sustainable economic and social development of the Jiaozhou Bay area,it is necessary to s...In recent years,development activities have had a significant impact on the environment of the Jiaozhou Bay,China.To ensure the sustainable economic and social development of the Jiaozhou Bay area,it is necessary to strengthen corresponding control measures.The important prerequisite is to properly understand the environmental conditions laws of natural change,especially the dynamic processes of sediment and the characteristics of landform evolution.Based on the data of continuous observation at 6 stations in Jiaozhou Bay for 25 hours,the Hydrodynamic Eutrophication Model(HEM-3D)was used to simulate the sediment erosion and deposition.The results show that the maximum suspended sediment concentration in the sea area of Jiaozhou Bay is about 40 mg/L,which appears in the northwestern area of the bay top and the Cangkou watercourse area,and the low concentration is located in the area of the central Jiaozhou Bay towards the bay mouth.The suspended sediment is 6?10 mg/L.Affected by a decrease in seawater material,the direction of the prevailing current in the Jiaozhou Bay area is different from that of the sediment transport.The velocity of the flood current is higher than that of the ebb current.However,during flood tide,the flux of resuspended seafloor sediment outside and at the mouth of the bay is limited and cannot contribute significantly to the suspended sediment in the bay.During ebb tide,the resuspended sediment at the shallow-water bay head and the east and west sides spreads toward the bay mouth with the ebb current,although it extends beyond the bay through the bay mouth.The research results can provide scientific support for the Jiaozhou Bay project construction and environmental protection.展开更多
基金jointed funded by the National Natural Science Foundation of China (41376079 and 41276060)Marine Geology Survey Project (GZH200900501,DD20160137 and DD20190205)Foundation of the Shandong Provincial Key Laboratory of Marine Ecology and Environment&Disaster Prevention (201304).
文摘Engineering construction actively occurs in coastal zones, and these areas have numerous potential geological hazard factors. Since 2009, the development of geological surveys in sea areas has promoted extensive geophysical surveys in Qingdao offshore. In the present study, the types and distribution of potential geological hazard factors were systematically revealed using sub-bottom profile data, side-scan sonar data, and single-channel seismic data, among others. Based on previous research findings, the potential geological hazard factors are classified, and control factors in Qingdao offshore are discussed. The research results show that the primary potential geological hazards include active faults, buried paleo channels, shallow gas, irregular bedrock, eroded gullies, estuary deltas, tidal sand ridges, and seawater intrusion. In addition, neotectonic movement, sea level changes and sedimentary dynamic processes were the main factors that affected the distribution of geological hazards in Qingdao offshore.
基金This study was jointed funded by the Marine Geology Survey Project(DD20160137,GZH200900501 and DD20190502)the National Natural Science Foundation of China(41376079 and 41276060).
文摘In recent years,development activities have had a significant impact on the environment of the Jiaozhou Bay,China.To ensure the sustainable economic and social development of the Jiaozhou Bay area,it is necessary to strengthen corresponding control measures.The important prerequisite is to properly understand the environmental conditions laws of natural change,especially the dynamic processes of sediment and the characteristics of landform evolution.Based on the data of continuous observation at 6 stations in Jiaozhou Bay for 25 hours,the Hydrodynamic Eutrophication Model(HEM-3D)was used to simulate the sediment erosion and deposition.The results show that the maximum suspended sediment concentration in the sea area of Jiaozhou Bay is about 40 mg/L,which appears in the northwestern area of the bay top and the Cangkou watercourse area,and the low concentration is located in the area of the central Jiaozhou Bay towards the bay mouth.The suspended sediment is 6?10 mg/L.Affected by a decrease in seawater material,the direction of the prevailing current in the Jiaozhou Bay area is different from that of the sediment transport.The velocity of the flood current is higher than that of the ebb current.However,during flood tide,the flux of resuspended seafloor sediment outside and at the mouth of the bay is limited and cannot contribute significantly to the suspended sediment in the bay.During ebb tide,the resuspended sediment at the shallow-water bay head and the east and west sides spreads toward the bay mouth with the ebb current,although it extends beyond the bay through the bay mouth.The research results can provide scientific support for the Jiaozhou Bay project construction and environmental protection.