In remote sensing imagery,approximately 67%of the data are affected by cloud cover,significantly increasing the difficulty of image classification,recognition,and other downstream interpretation tasks.To effectively a...In remote sensing imagery,approximately 67%of the data are affected by cloud cover,significantly increasing the difficulty of image classification,recognition,and other downstream interpretation tasks.To effectively address the randomness of cloud distribution and the non-uniformity of cloud thickness,we propose a coarse-to-fine thin cloud removal architecture based on the observations of the random distribution and uneven thickness of cloud.In the coarse-level declouding network,we innovatively introduce a multi-scale attention mechanism,i.e.,pyramid nonlocal attention(PNA).By integrating global context with local detail information,it specifically addresses image quality degradation caused by the uncertainty in cloud distribution.During the fine-level declouding stage,we focus on the impact of cloud thickness on declouding results(primarily manifested as insufficient detail information).Through a carefully designed residual dense module,we significantly enhance the extraction and utilization of feature details.Thus,our approach precisely restores lost local texture features on top of coarse-level results,achieving a substantial leap in declouding quality.To evaluate the effectiveness of our cloud removal technology and attention mechanism,we conducted comprehensive analyses on publicly available datasets.Results demonstrate that our method achieves state-of-the-art performance across a wide range of techniques.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.2572025BR14)the China Energy Digital Intelligence Technology Development(Beijing)Co.,Ltd.Science and Technology Innovation Project(No.YA2024001500).
文摘In remote sensing imagery,approximately 67%of the data are affected by cloud cover,significantly increasing the difficulty of image classification,recognition,and other downstream interpretation tasks.To effectively address the randomness of cloud distribution and the non-uniformity of cloud thickness,we propose a coarse-to-fine thin cloud removal architecture based on the observations of the random distribution and uneven thickness of cloud.In the coarse-level declouding network,we innovatively introduce a multi-scale attention mechanism,i.e.,pyramid nonlocal attention(PNA).By integrating global context with local detail information,it specifically addresses image quality degradation caused by the uncertainty in cloud distribution.During the fine-level declouding stage,we focus on the impact of cloud thickness on declouding results(primarily manifested as insufficient detail information).Through a carefully designed residual dense module,we significantly enhance the extraction and utilization of feature details.Thus,our approach precisely restores lost local texture features on top of coarse-level results,achieving a substantial leap in declouding quality.To evaluate the effectiveness of our cloud removal technology and attention mechanism,we conducted comprehensive analyses on publicly available datasets.Results demonstrate that our method achieves state-of-the-art performance across a wide range of techniques.