Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the ...Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.展开更多
Retrieving high-fidelity images from optical speckles remains challenging,especially when the information in speckles is severely insufficient.To address classification through scattering media under such constraints,...Retrieving high-fidelity images from optical speckles remains challenging,especially when the information in speckles is severely insufficient.To address classification through scattering media under such constraints,we propose Speckle Transformer,a vision-transformer-based model that directly classifies objects using raw speckle patterns without intermediate image retrieval.By leveraging inherent features within speckles to extract discriminative features,our approach achieves nearly 90%accuracy for classifying speckles encoded with different images,outperforming traditional retrieval-classification pipelines by up to five times,even with extreme information sparsity(i.e.,1/1024 speckle regions of interest).In addition,we quantify speckle information capacity via information entropy analysis,demonstrating that classification accuracy correlates strongly with the information entropy of speckle autocorrelation.We not only overcome limitations of conventional methods but also establish a paradigm for real-time classification in scattering environments with constrained data.展开更多
Zn-ion hybrid supercapacitors(ZHSCs),as emerging energy storage systems,combine high energy and power density with cost-effectiveness and safety,attracting significant attention.However,due to the inherent energy stor...Zn-ion hybrid supercapacitors(ZHSCs),as emerging energy storage systems,combine high energy and power density with cost-effectiveness and safety,attracting significant attention.However,due to the inherent energy storage mechanism and the diminishing marginal benefits of increased porosity on capacitance,engineering porous nanostructures to develop carbon materials with ideal architectures is crucial for achieving high performance.Herein,a novel web-in-web porous carbon/carbon nanotubes(CNTs)composite has been proposed,fabricated by a simple phase separation method and two-step carbonization.During pre-oxidation,gradual air oxidation induces the formation of an O,N co-doped polymer-chain template,which subsequently transforms into a graphitized web during high-temperature carbonization.The optimized web-in-web structure,enriched with abundant active sites,accelerates mass transport and charge transfer kinetics.When assembled in ZHSCs,the web-in-web cathode achieved a high area capacitance(14,309 mF cm^(-2))with high mass loading(38.2 mg cm^(-2)).It delivered excellent high-rate performance at 50 mA cm^(-2)with a capacitance retention of 83%after 10,000 cycles,also boosting a high energy density(1452.7μWh cm^(-2))and power density(30.8 mW cm^(-2)).Furthermore,ex situ characterization and in situ electrochemical analyses reveal hybrid energy storage mechanisms,involving both physical/chemical adsorption and precipitation/dissolution across different potential regions.This study provides a promising strategy for designing high-area-capacitance carbon cathodes boosting high-performance ZHSCs.展开更多
Permanent faults in medium-voltage cable joints significantly impact the reliability of distribution networks.Radial breakdowns caused by water ingress often lead to several self-extinguishing arc discharges—referred...Permanent faults in medium-voltage cable joints significantly impact the reliability of distribution networks.Radial breakdowns caused by water ingress often lead to several self-extinguishing arc discharges—referred to as incipient faults—before developing into permanent faults.Effective monitoring of incipient faults can help reduce outage costs associated with permanent faults.However,the specific fault scenarios of incipient faults remain insufficiently understood.To address this gap,this study designed a simulation experiment replicating incipient fault conditions in medium-voltage cable joints under humid environments,based on actual operating scenarios.The experiment compared the insulation strength required to trigger incipient faults and examined both non-electrical fault characteristics,such as insulation damage and arc flame intensity,and electrical characteristics,such as fault current and impedance.Experimental observations show that,in cable joints,gaps without accumulated water retain sufficient insulation strength to prevent breakdown.However,the infiltration of accumulated water shortens the effective insulation path,thereby lowering the breakdown threshold.The peak current of an incipient fault can range from hundreds to thousands of amperes,with a duration of approximately 1/8 to 1/4 of a power–frequency cycle.During incipient faults,arc burning on the pore wall leaves conductive traces,which progressively reduce the insulation strength of the surrounding environment.As these traces accumulate over multiple events,the likelihood of breakdown increases,ultimately resulting in a permanent fault.Permanent faults are characterized by intense,sustained arc discharges that persist over a macroscopic time scale and exhibit flat-shoulder waveforms within individual cycles,with discharge intensity increasing progressively over time.展开更多
Sclerotinia sclerotiorum,a fungus that causes a devastating fungal disease of rapeseed(Brassica napus),causes significant yield losses globally.Carbon dots(CDs),a class of carbon-based nanomaterials,have emerged as pr...Sclerotinia sclerotiorum,a fungus that causes a devastating fungal disease of rapeseed(Brassica napus),causes significant yield losses globally.Carbon dots(CDs),a class of carbon-based nanomaterials,have emerged as promising agents for plant disease management owing to low toxicity and biocompatibility.This study demonstrates the antifungal potential of Salvia miltiorrhiza-derived CDs in enhancing resistance to S.sclerotiorum in rapeseed.In vitro assays revealed concentration-dependent suppression of fungal growth by CDs.In planta applications triggered multifaceted defense responses evidenced by:(1)increased glucosinolate accumulation and redox homeostasis through ROS modulation and elevated superoxide dismutase/catalase activities;(2)transcriptional activation of ROS-scavenging systems and biosynthesis pathways for defensive metabolites(flavonoids and phenylpropanes);and(3)restoration of pathogen-impaired physiological processes,including photosynthetic recovery via Calvin cycle reactivation,energy metabolism through TCA cycle enhancement,and stress-responsive hormone signaling.Integrated multi-omics analyses further indicated that CDs establish a coordinated defense network by simultaneously optimizing metabolic homeostasis and amplifying disease resistance mechanisms.These findings position CDs as a novel eco-friendly strategy for biotic stress management,providing a sustainable approach to mitigate crop losses caused by fungal pathogens.展开更多
The datasets of two Ocean Model Intercomparison Project(OMIP)simulation experiments from the LASG/IAP Climate Ocean Model,version 3(LICOM3),forced by two different sets of atmospheric surface data,are described in thi...The datasets of two Ocean Model Intercomparison Project(OMIP)simulation experiments from the LASG/IAP Climate Ocean Model,version 3(LICOM3),forced by two different sets of atmospheric surface data,are described in this paper.The experiment forced by CORE-II(Co-ordinated Ocean–Ice Reference Experiments,Phase II)data(1948–2009)is called OMIP1,and that forced by JRA55-do(surface dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis)data(1958–2018)is called OMIP2.First,the improvement of LICOM from CMIP5 to CMIP6 and the configurations of the two experiments are described.Second,the basic performances of the two experiments are validated using the climatological-mean and interannual time scales from observation.We find that the mean states,interannual variabilities,and long-term linear trends can be reproduced well by the two experiments.The differences between the two datasets are also discussed.Finally,the usage of these data is described.These datasets are helpful toward understanding the origin system bias of the fully coupled model.展开更多
Electrochemical conversion of CO2 into fuel has been regarded as a promising approach to achieve the global carbon cycle.Herein,we report an efficient cobalt catalyst with a unique flower-like morphology synthesized b...Electrochemical conversion of CO2 into fuel has been regarded as a promising approach to achieve the global carbon cycle.Herein,we report an efficient cobalt catalyst with a unique flower-like morphology synthesized by a green and facile hydrothermal method,in which n-butylamine is used as the capping agent.The resultant catalyst shows superior electrocatalytic activity toward CO2 electroreduction,which is highly selective for generating formate with a Faraday efficiency of 63.4%.Electrochemical analysis reveals that the oxide on the surface is essential for the electrocatalysis of the CO2 reduction reaction.Cyclic voltammograms further suggest that this catalyst is highly active for the oxidation of reduced product,and can thus be seen as a bifunctional catalyst.展开更多
Oncorhynchus mykiss is delicious and contains abundant flavor substances.However,few studies focused on umami peptides of O.mykiss.In the current work,umami peptides derived from O.mykiss were identified using virtual...Oncorhynchus mykiss is delicious and contains abundant flavor substances.However,few studies focused on umami peptides of O.mykiss.In the current work,umami peptides derived from O.mykiss were identified using virtual screening,molecular docking,and electronic tongue analysis.First,the O.mykiss protein was hydrolyzed using the PeptideCutter online enzymolysis program.Subsequently,water-soluble and toxicity screening were performed by Innovagen and ToxinPred software,respectively.The potential peptides were docked with umami receptor T1R1/T1R3.Furthermore,taste properties of potential peptides were validated by electronic tongue.Docking results suggested that the three tetrapeptide EANK,EEAK,and EMQK could enter the binding pocket in the T1R1 cavity,wherein Arg151,Asp147,Gln52,and Arg277 may play key roles in the production of umami taste.Electronic tongue results showed that the umami value of EANK,EEAK,and EMQK were stronger than monosodium glutamate.This work provides a new insight for the screening of umami peptides in O.mykiss.展开更多
This study aimed to identify novel ACEI peptides from Larimichthys crocea titin using in silico approaches and to clarify the molecular interaction mechanism.The hydrolyzed peptides of titin were compared with known A...This study aimed to identify novel ACEI peptides from Larimichthys crocea titin using in silico approaches and to clarify the molecular interaction mechanism.The hydrolyzed peptides of titin were compared with known ACEI peptides in the AHTPDB and BIOPEP-UWM database.Furthermore,peptides were evaluated for their solubility,ADMET properties,ΔG(kcal/mol)values,and in vitro ACEI activity.Molecular mechanism of ACE-peptide was performed by molecular interactions and binding orientation study.The results revealed that IC50 values of Trp-Ala-Arg(WAR)and Trp-Gln-Arg(WQR)were(31.2±0.8)and(231.33±0.02)mol/L,respectively.The docking interactions result suggested that ACE-WAR and ACEWQR complexes have same binding site,including the residues LYS511,TYR520,TYR523,HIS353,and HIS513.Molecular docking of two tripeptides WAR and WQR with ACE studies predicted their binding site and clarified the interaction between ACE and its inhibitors.The molecular docking data are consistent with the ACE inhibitory activity of the studied peptides.The results showed that Larimichthys crocea titin may be a valuable source for developing nutraceutical food.展开更多
The purpose of this study was to screen the xanthine oxidase(XO)inhibitory peptides from egg white proteins through virtual hydrolysis,in vitro activity validation,and molecular docking.The results demonstrated that t...The purpose of this study was to screen the xanthine oxidase(XO)inhibitory peptides from egg white proteins through virtual hydrolysis,in vitro activity validation,and molecular docking.The results demonstrated that tripeptide EEK from ovalbumin exhibited potent XO inhibitory activity with an IC50 value of 141μmol/L.The molecular docking results showed that tripeptide EEK bound with the active center of XO via 3 carbon hydrogen bond interactions,2 salt bridges,5 conventional hydrogen bond interactions,and 4 attractive charge interactions.The residues Glu802,Phe1009,and Arg880 may play key roles in the XO catalytic reaction.Especially,the key intermolecular forces of inhibiting XO activity may be special type of hydrogen bonds including carbon hydrogen bond interactions and attraction charge interactions.The novel tripeptide EEK is potential candidates for controlling hyperuricemia.展开更多
Wavefront shaping(WFS)techniques have been used as a powerful tool to control light propagation in complex media,including multimode fibers.In this paper,we propose a new application of WFS for multimode fber-based se...Wavefront shaping(WFS)techniques have been used as a powerful tool to control light propagation in complex media,including multimode fibers.In this paper,we propose a new application of WFS for multimode fber-based sensors.The use of a single multimode fiber alone,without any special fabrication,as a sensor based on the light intensity variations is not an easy task.The twist effect on multimode fiber is used as an example herein.Experimental results show that light intensity through the multimode fiber shows no direct relationship with the twist angle,but the correlation coefficient(CC)of speckle patterns does.Moreover,if WFS is applied to transform the spatially seemingly random light pattern at the exit of the multimode fiber into an optical focus.The focal pattern correlation and intensity both can serve to gauge the twist angle,with doubled measurement range and allowance of using a fast point detector to provide the feedback.With further development,WFS may find potentials to facilitate the development of multimode fber-based sensors in a variety of scenarios.展开更多
The egg white-derived hexapeptide TNGIIR inhibits angiotensin-converting enzyme(ACE)activity in vitro.In this work,molecular docking revealed that TNGIIR established hydrogen bonds with the S1(Ala 354),S2(Gln 281,His ...The egg white-derived hexapeptide TNGIIR inhibits angiotensin-converting enzyme(ACE)activity in vitro.In this work,molecular docking revealed that TNGIIR established hydrogen bonds with the S1(Ala 354),S2(Gln 281,His 513,Tyr 520 and Lys 511)and S1(Glu 162)pockets of ACE.In addition,the potential antihypertensive effect of the oral administration of TNGIIR in spontaneously hypertensive rats(SHR)was investigated,as was the effect of this peptide on the mRNA expression of ACE and angiotensin type 1(AT1)and type 2(AT2)receptors in renal tissue.The oral administration of TNGIIR(2,10 and 50 mg/kg)for up to four weeks did not reduce the blood pressure of SHR,in contrast to captopril(10 mg/kg,orally),but attenuated the mRNA expression of ACE and AT1 receptor(as did captopril).In contrast,both TNGIIR and captopril enhanced the expression of AT2 receptor mRNA.There was no change in the circulating concentration of angiotensin I,but a slight decrease(about 10%)was seen in the concentration of circulating angiotensin II with TNGIIR and captopril.展开更多
Inhibition of beta-site APP cleaving enzyme1(BACE1)is one of the most promising therapeutic approaches for Alzheimer’s disease.To find natural products for the treatment of Alzheimer’s disease,absorption,distributio...Inhibition of beta-site APP cleaving enzyme1(BACE1)is one of the most promising therapeutic approaches for Alzheimer’s disease.To find natural products for the treatment of Alzheimer’s disease,absorption,distribution,metabolism,excretion and toxicity(ADMET)properties and in vitro BACE1 inhibitory activity of the peptides isolated from egg albumin were evaluated.Then,molecular docking and molecular dynamics simulation were used to explain the molecular mechanism of the interactions between BACE1 and peptides.The IC50 value of peptide KLPGF,with satisfactory ADMET properties,against BACE1 was(8.30±0.56)mmol/L.Molecular docking revealed that KLPGF contacted with the residues of BACE1’s active sites through twelve hydrogen bonds interactions,two hydrophobic interactions,one electrostatic interaction,and two Pi-cation interactions.The 5 ns molecular dynamics simulations confirmed that the structure of KLPGF with BACE1 was stable.Peptide KLPGF contacted the residues Lys321,Asp228,and Asn233 with stable hydrogen bonds.KLPGF may be a potential anti-BACE1 candidate.展开更多
Three-dimensional holey nitrogen-doped carbon matrixes decorated with molybdenum dioxide(MoO_(2))nanoparticles have been successfully synthesized via a NaCl-assisted template strategy.The obtained MoO_(2)/C composites...Three-dimensional holey nitrogen-doped carbon matrixes decorated with molybdenum dioxide(MoO_(2))nanoparticles have been successfully synthesized via a NaCl-assisted template strategy.The obtained MoO_(2)/C composites offered multi-advantages,including higher specific surface area,more active sites,more ions/electrons transmission channels,and shorter transmission path due to the synergistic effect of the uniformly distributed MoO_(2) nanoparticles and porous carbon structure.Especially,the oxygen vacancies were introduced into the prepared composites and enhanced the Li^(+)intercalation/deintercalation process during electrochemical cycling by the Coulomb force.The existence of the local built-in electric field was proved by experimental data,differential charge density distribution,and density of states calculation.The uniquely designed structure and introduced oxygen vacancy defects endowed the MoO_(2)/C composites with excellent electrochemical properties.In view of the synergistic effect of the uniquely designed morphology and introduced oxygen vacancy defects,the MoO_(2)/C composites exhibited superior electrochemical performance of a high capacity of 918.2 mAh g^(-1) at 0.1 A g^(-1) after 130 cycles,562.1 mAh g^(-1) at 1.0 A g^(-1) after 1000 cycles,and a capacity of 181.25 mAh g^(-1) even at 20.0 A g^(-1).This strategy highlights the path to promote the commercial application of MoO_(2)-based and other transition metal oxide electrodes for energy storage devices.展开更多
Water splitting has been proposed to be a promising approach to producing clean hydrogen fuel.The two half-reactions of water splitting,that is,the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),ta...Water splitting has been proposed to be a promising approach to producing clean hydrogen fuel.The two half-reactions of water splitting,that is,the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),take place kinetically fast in solutions with completely different pH values.Enabling HER and OER to simultaneously occur under kinetically favorable conditions while using exclusively low-cost,earth-abundant electrocatalysts is highly desirable but remains a challenge.Herein,we demonstrate that using a bipolar membrane(BPM)we can accomplish HER in a strongly acidic solution and OER in a strongly basic solution,with bifunctional self-supported cobaltnickel phosphide nanowire electrodes to catalyze both reactions.Such asymmetric acid/alkaline water electrolysis can be achieved at 1.567 V to deliver a current density of 10 mA/cm2 with ca.100%Faradaic efficiency.Moreover,using an“irregular”BPM with unintentional crossover the voltage needed to afford 10 mA/cm2 can be reduced to 0.847 V,due to the assistance of electrochemical neutralization between acid and alkaline.Furthermore,we show that BPM-based asymmetric water electrolysis can be accomplished in a circulated single-cell electrolyzer delivering 10 mA/cm2 at 1.550 V and splitting water very stably for at least 25 hours,and that water electrolysis is enabled by a solar panel operating at 0.908 V(@13 mA/cm2),using an“irregular”BPM.BPMbased asymmetric water electrolysis is a promising alternative to conventional proton and anion exchange membrane water electrolysis.展开更多
The angiotensin-converting enzyme(ACE)inhibitory peptide NCW derived from Mizuhopecten yessoensis has been demonstrated to have significant in vivo anti-hypertensive effects,however,its anti-hypertensive mechanism is ...The angiotensin-converting enzyme(ACE)inhibitory peptide NCW derived from Mizuhopecten yessoensis has been demonstrated to have significant in vivo anti-hypertensive effects,however,its anti-hypertensive mechanism is still not fully clarified.This study established a UPLC-Q-TRAP-MS/MS-based widely targeted kidney metabolomics approach to explore the changes of kidney metabolic profiles and to clarify the antihypertensive mechanism of peptide NCW in spontaneously hypertensive rats(SHRs).Multivariate statistical analysis indicated that the kidney metabolic profiles were clearly separated between the SHR-NCW and SHRUntreated groups.A total of 85 metabolites were differentially regulated,and 16 metabolites were identified as potential kidney biomarkers,e.g.,3-hydroxybutyrate,malonic acid,deoxycytidine,and L-aspartic acid.The peptide NCW might regulate kidney metabolic disorder of SHRs to alleviate hypertension by suppressing inflammation and improving nitric oxide production under the regulation of linoleic acid metabolism,folate related pathways,synthesis and degradation of ketone bodies,pyrimidine metabolism,β-alanine metabolism,and retinal metabolism.展开更多
Producing renewable e-methanol from e-hydrogen and diverse carbon sources is an essential way for clean methanol preparation.Despite this,the technical and economic feasibility of different e-methanols has yet to be t...Producing renewable e-methanol from e-hydrogen and diverse carbon sources is an essential way for clean methanol preparation.Despite this,the technical and economic feasibility of different e-methanols has yet to be thoroughly compared,leaving the most promising pathway to achieve commercialization yet evident.This paper reports a preliminary analysis of the lifecycle greenhouse gas(GHG)emissions and costs of four renewable e-methanols with different carbon sources:bio-carbon,direct air capture(DAC),fossil fuel carbon capture(FFCC),and fossil.The results indicate that renewable e-methanol costs(4167−10250 CNY/tonne)2−4 times the market rate of grey methanol.However,with the carbon tax and the projected decline in e-H2 costs,blue e-methanol may initially replace diesel in inland navigation,followed by a shift from heavy fuel oil(HFO)to green e-methanol in ocean ship-ping.Furthermore,the e-H2 cost and the availability of green carbon are vital factors affecting cost-effectiveness.A reduction in e-H2 cost from 2.1 CNY/Nm3 to 1.1 CNY/Nm3 resulting from a transition from an annual to a daily scheduling period,could lower e-methanol costs by 1200 to 2100 CNY.This paper also provides an in-depth discussion on the challenges and opportunities associated with the various green carbon sources.展开更多
The small organic molecule electro-oxidation(OMEO) and the hydrogen evolution(HER) are two important half-reactions in direct liquid fuel cells(DLFCs) and water electrolyzers,respectively,whose performance is largely ...The small organic molecule electro-oxidation(OMEO) and the hydrogen evolution(HER) are two important half-reactions in direct liquid fuel cells(DLFCs) and water electrolyzers,respectively,whose performance is largely hindered by the low activity and poor stability of electrocatalysts.Herein,we demonstrate that a simple phosphorization treatment of commercially available palladium-nickel(PdNi) catalysts results in multifunctional ternary palladium nickel phosphide(PdNiP) catalysts,which exhibit substantially enhanced electrocatalytic activity and stability for HER and OMEO of a number of molecules including formic acid,methanol,ethanol,and ethylene glycol,in acidic and/or alkaline media.The improved performance results from the modification of electronic structure of palladium and nickel by the introduced phosphorus and the enhanced corrosion resistance of PdNiP.The simple phosphorization approach reported here allows for mass production of highly-active OMEO and HER electrocatalysts,holding substantial promise for their large-scale application in direct liquid fuel cells and water electrolyzers.展开更多
Hydrogen(H_(2))production through proton exchange membrane(PEM)water electrolysis represents a promising avenue for creating sustainable fuel due to its high efficiency and operational flexibility,which makes it suita...Hydrogen(H_(2))production through proton exchange membrane(PEM)water electrolysis represents a promising avenue for creating sustainable fuel due to its high efficiency and operational flexibility,which makes it suitable for integration with renewable energy sources.However,the widespread adoption of PEM electrolysis is critically hindered by the dependence on iridium-based catalysts for the oxygen evolution reaction(OER).展开更多
Single-atom catalysts(SACs)have emerged as a transformative technology for electrochemical energy conversion,offering exceptional atomic utilization,precise active sites,and tunable electronic properties.This perspect...Single-atom catalysts(SACs)have emerged as a transformative technology for electrochemical energy conversion,offering exceptional atomic utilization,precise active sites,and tunable electronic properties.This perspective explores the potential of SACs in advancing key electrochemical applications,including fuel cells,electrolyzers,and sustainable chemical production systems.We examine state-of-the-art synthesis methods that enable precise control over atomic dispersion and catalytic activity,as well as mechanistic insights that enhance our understanding of their superior performance.Additionally,the environmental and economic benefits of SACs,such as reduced resource consumption and enhanced durability,are highlighted.Despite their promising attributes,challenges related to stability,scalability,and cost-effective production remain.We discuss these challenges and outline future research directions needed to fully realize the potential of SACs in sustainable energy systems.By addressing these hurdles,SACs could play a pivotal role in the transition to cleaner,more efficient global energy solutions.展开更多
基金support by National Key Research and Development Program of China(2022YFB3803502)National Natural Science Foundation of China(52103076)+5 种基金Science and Technology Commission of Shanghai Municipality(23ZR1400300)special fund of Beijing Key Laboratory of Indoor Air Quality Evaluat ion and Control(NO.BZ0344KF21-02)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22203)JLF is a member of LSRE-LCM–Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials,supported by national funds through FCT/MCTES(PIDDAC):LSRE-LCM,UIDB/50020/2020(DOI:10.54499/UIDB/50020/2020)UIDP/50020/2020(DOI:10.54499/UIDP/50020/2020)ALiCE,LA/P/0045/2020(DOI:10.54499/LA/P/0045/2020).
文摘Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.
基金supported by the National Natural Science Foundation of China(Grant Nos.81930048 and 82330061)the Hong Kong Research Grant Council(Grant Nos.15217721,C7074-21GF,and 15125724)+4 种基金the Hong Kong Innovation and Technology Commission(Grant Nos.GHP/043/19SZ and GHP/044/19GD)the Guangdong Science and Technology Commission(Grant No.2019BT02X105)the Shenzhen Science and Technology Innovation Commission(Grant No.JCYJ20220818100202005)the Hong Kong Polytechnic University(Grant Nos.P0038180,P0039517,P0043485,and P0045762)the Fundamental Research Funds for the Central Universities(Grant No.QTZX25121).
文摘Retrieving high-fidelity images from optical speckles remains challenging,especially when the information in speckles is severely insufficient.To address classification through scattering media under such constraints,we propose Speckle Transformer,a vision-transformer-based model that directly classifies objects using raw speckle patterns without intermediate image retrieval.By leveraging inherent features within speckles to extract discriminative features,our approach achieves nearly 90%accuracy for classifying speckles encoded with different images,outperforming traditional retrieval-classification pipelines by up to five times,even with extreme information sparsity(i.e.,1/1024 speckle regions of interest).In addition,we quantify speckle information capacity via information entropy analysis,demonstrating that classification accuracy correlates strongly with the information entropy of speckle autocorrelation.We not only overcome limitations of conventional methods but also establish a paradigm for real-time classification in scattering environments with constrained data.
基金financially supported by the National Key Research and Development Program of China(No.2024YFA1210602)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515140044)
文摘Zn-ion hybrid supercapacitors(ZHSCs),as emerging energy storage systems,combine high energy and power density with cost-effectiveness and safety,attracting significant attention.However,due to the inherent energy storage mechanism and the diminishing marginal benefits of increased porosity on capacitance,engineering porous nanostructures to develop carbon materials with ideal architectures is crucial for achieving high performance.Herein,a novel web-in-web porous carbon/carbon nanotubes(CNTs)composite has been proposed,fabricated by a simple phase separation method and two-step carbonization.During pre-oxidation,gradual air oxidation induces the formation of an O,N co-doped polymer-chain template,which subsequently transforms into a graphitized web during high-temperature carbonization.The optimized web-in-web structure,enriched with abundant active sites,accelerates mass transport and charge transfer kinetics.When assembled in ZHSCs,the web-in-web cathode achieved a high area capacitance(14,309 mF cm^(-2))with high mass loading(38.2 mg cm^(-2)).It delivered excellent high-rate performance at 50 mA cm^(-2)with a capacitance retention of 83%after 10,000 cycles,also boosting a high energy density(1452.7μWh cm^(-2))and power density(30.8 mW cm^(-2)).Furthermore,ex situ characterization and in situ electrochemical analyses reveal hybrid energy storage mechanisms,involving both physical/chemical adsorption and precipitation/dissolution across different potential regions.This study provides a promising strategy for designing high-area-capacitance carbon cathodes boosting high-performance ZHSCs.
基金supported by National Natural Science Foundation of China(No.52077133).
文摘Permanent faults in medium-voltage cable joints significantly impact the reliability of distribution networks.Radial breakdowns caused by water ingress often lead to several self-extinguishing arc discharges—referred to as incipient faults—before developing into permanent faults.Effective monitoring of incipient faults can help reduce outage costs associated with permanent faults.However,the specific fault scenarios of incipient faults remain insufficiently understood.To address this gap,this study designed a simulation experiment replicating incipient fault conditions in medium-voltage cable joints under humid environments,based on actual operating scenarios.The experiment compared the insulation strength required to trigger incipient faults and examined both non-electrical fault characteristics,such as insulation damage and arc flame intensity,and electrical characteristics,such as fault current and impedance.Experimental observations show that,in cable joints,gaps without accumulated water retain sufficient insulation strength to prevent breakdown.However,the infiltration of accumulated water shortens the effective insulation path,thereby lowering the breakdown threshold.The peak current of an incipient fault can range from hundreds to thousands of amperes,with a duration of approximately 1/8 to 1/4 of a power–frequency cycle.During incipient faults,arc burning on the pore wall leaves conductive traces,which progressively reduce the insulation strength of the surrounding environment.As these traces accumulate over multiple events,the likelihood of breakdown increases,ultimately resulting in a permanent fault.Permanent faults are characterized by intense,sustained arc discharges that persist over a macroscopic time scale and exhibit flat-shoulder waveforms within individual cycles,with discharge intensity increasing progressively over time.
基金funded by the Fundamental Research Funds for the Provincial Universities of Zhejiang(2024TD001)“San Nong Jiu Fang”Sciences and Technologies Cooperation Project of Zhejiang Province(2024SNJF010)General Research Project of Zhejiang Provincial Department of Education(Special Project for Reforming the Training Mode of Professional Degree Graduate Students)(Y202456263).
文摘Sclerotinia sclerotiorum,a fungus that causes a devastating fungal disease of rapeseed(Brassica napus),causes significant yield losses globally.Carbon dots(CDs),a class of carbon-based nanomaterials,have emerged as promising agents for plant disease management owing to low toxicity and biocompatibility.This study demonstrates the antifungal potential of Salvia miltiorrhiza-derived CDs in enhancing resistance to S.sclerotiorum in rapeseed.In vitro assays revealed concentration-dependent suppression of fungal growth by CDs.In planta applications triggered multifaceted defense responses evidenced by:(1)increased glucosinolate accumulation and redox homeostasis through ROS modulation and elevated superoxide dismutase/catalase activities;(2)transcriptional activation of ROS-scavenging systems and biosynthesis pathways for defensive metabolites(flavonoids and phenylpropanes);and(3)restoration of pathogen-impaired physiological processes,including photosynthetic recovery via Calvin cycle reactivation,energy metabolism through TCA cycle enhancement,and stress-responsive hormone signaling.Integrated multi-omics analyses further indicated that CDs establish a coordinated defense network by simultaneously optimizing metabolic homeostasis and amplifying disease resistance mechanisms.These findings position CDs as a novel eco-friendly strategy for biotic stress management,providing a sustainable approach to mitigate crop losses caused by fungal pathogens.
基金supported by the National Key R&D Program for Developing Basic Sciences (Grant Nos. 2016YFC1401401 and 2016YFC1401601)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDC01000000)the National Natural Science Foundation of China (Grants Nos. 41576026, 41576025, 41776030, 41931183 and 41976026)
文摘The datasets of two Ocean Model Intercomparison Project(OMIP)simulation experiments from the LASG/IAP Climate Ocean Model,version 3(LICOM3),forced by two different sets of atmospheric surface data,are described in this paper.The experiment forced by CORE-II(Co-ordinated Ocean–Ice Reference Experiments,Phase II)data(1948–2009)is called OMIP1,and that forced by JRA55-do(surface dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis)data(1958–2018)is called OMIP2.First,the improvement of LICOM from CMIP5 to CMIP6 and the configurations of the two experiments are described.Second,the basic performances of the two experiments are validated using the climatological-mean and interannual time scales from observation.We find that the mean states,interannual variabilities,and long-term linear trends can be reproduced well by the two experiments.The differences between the two datasets are also discussed.Finally,the usage of these data is described.These datasets are helpful toward understanding the origin system bias of the fully coupled model.
文摘Electrochemical conversion of CO2 into fuel has been regarded as a promising approach to achieve the global carbon cycle.Herein,we report an efficient cobalt catalyst with a unique flower-like morphology synthesized by a green and facile hydrothermal method,in which n-butylamine is used as the capping agent.The resultant catalyst shows superior electrocatalytic activity toward CO2 electroreduction,which is highly selective for generating formate with a Faraday efficiency of 63.4%.Electrochemical analysis reveals that the oxide on the surface is essential for the electrocatalysis of the CO2 reduction reaction.Cyclic voltammograms further suggest that this catalyst is highly active for the oxidation of reduced product,and can thus be seen as a bifunctional catalyst.
基金supported by The National Key R&D Program of China (2019YFD0901702)
文摘Oncorhynchus mykiss is delicious and contains abundant flavor substances.However,few studies focused on umami peptides of O.mykiss.In the current work,umami peptides derived from O.mykiss were identified using virtual screening,molecular docking,and electronic tongue analysis.First,the O.mykiss protein was hydrolyzed using the PeptideCutter online enzymolysis program.Subsequently,water-soluble and toxicity screening were performed by Innovagen and ToxinPred software,respectively.The potential peptides were docked with umami receptor T1R1/T1R3.Furthermore,taste properties of potential peptides were validated by electronic tongue.Docking results suggested that the three tetrapeptide EANK,EEAK,and EMQK could enter the binding pocket in the T1R1 cavity,wherein Arg151,Asp147,Gln52,and Arg277 may play key roles in the production of umami taste.Electronic tongue results showed that the umami value of EANK,EEAK,and EMQK were stronger than monosodium glutamate.This work provides a new insight for the screening of umami peptides in O.mykiss.
基金supported by The National Natural Science Funds of China(No.31901635).
文摘This study aimed to identify novel ACEI peptides from Larimichthys crocea titin using in silico approaches and to clarify the molecular interaction mechanism.The hydrolyzed peptides of titin were compared with known ACEI peptides in the AHTPDB and BIOPEP-UWM database.Furthermore,peptides were evaluated for their solubility,ADMET properties,ΔG(kcal/mol)values,and in vitro ACEI activity.Molecular mechanism of ACE-peptide was performed by molecular interactions and binding orientation study.The results revealed that IC50 values of Trp-Ala-Arg(WAR)and Trp-Gln-Arg(WQR)were(31.2±0.8)and(231.33±0.02)mol/L,respectively.The docking interactions result suggested that ACE-WAR and ACEWQR complexes have same binding site,including the residues LYS511,TYR520,TYR523,HIS353,and HIS513.Molecular docking of two tripeptides WAR and WQR with ACE studies predicted their binding site and clarified the interaction between ACE and its inhibitors.The molecular docking data are consistent with the ACE inhibitory activity of the studied peptides.The results showed that Larimichthys crocea titin may be a valuable source for developing nutraceutical food.
基金supported by Beijing Advanced Innovation Center for Food Nutrition and Human Health(20181036).
文摘The purpose of this study was to screen the xanthine oxidase(XO)inhibitory peptides from egg white proteins through virtual hydrolysis,in vitro activity validation,and molecular docking.The results demonstrated that tripeptide EEK from ovalbumin exhibited potent XO inhibitory activity with an IC50 value of 141μmol/L.The molecular docking results showed that tripeptide EEK bound with the active center of XO via 3 carbon hydrogen bond interactions,2 salt bridges,5 conventional hydrogen bond interactions,and 4 attractive charge interactions.The residues Glu802,Phe1009,and Arg880 may play key roles in the XO catalytic reaction.Especially,the key intermolecular forces of inhibiting XO activity may be special type of hydrogen bonds including carbon hydrogen bond interactions and attraction charge interactions.The novel tripeptide EEK is potential candidates for controlling hyperuricemia.
基金supported by the Shenzhen Science and Technology Innovation Commission(No.JCYJ20170818104421564)the Hong Kong Innovation and Technology Commission(No.ITS/022/18)+1 种基金the Hong Kong Research Grant Council(No.25204416)the National Natural Science Foundation of China(Nos.81671726 and 81627805).
文摘Wavefront shaping(WFS)techniques have been used as a powerful tool to control light propagation in complex media,including multimode fibers.In this paper,we propose a new application of WFS for multimode fber-based sensors.The use of a single multimode fiber alone,without any special fabrication,as a sensor based on the light intensity variations is not an easy task.The twist effect on multimode fiber is used as an example herein.Experimental results show that light intensity through the multimode fiber shows no direct relationship with the twist angle,but the correlation coefficient(CC)of speckle patterns does.Moreover,if WFS is applied to transform the spatially seemingly random light pattern at the exit of the multimode fiber into an optical focus.The focal pattern correlation and intensity both can serve to gauge the twist angle,with doubled measurement range and allowance of using a fast point detector to provide the feedback.With further development,WFS may find potentials to facilitate the development of multimode fber-based sensors in a variety of scenarios.
基金the National Natural Science Funds of China(No.31901635)Beijing Advanced Innovation Centre for Food Nutrition and Human Health(Grant No.20181036).
文摘The egg white-derived hexapeptide TNGIIR inhibits angiotensin-converting enzyme(ACE)activity in vitro.In this work,molecular docking revealed that TNGIIR established hydrogen bonds with the S1(Ala 354),S2(Gln 281,His 513,Tyr 520 and Lys 511)and S1(Glu 162)pockets of ACE.In addition,the potential antihypertensive effect of the oral administration of TNGIIR in spontaneously hypertensive rats(SHR)was investigated,as was the effect of this peptide on the mRNA expression of ACE and angiotensin type 1(AT1)and type 2(AT2)receptors in renal tissue.The oral administration of TNGIIR(2,10 and 50 mg/kg)for up to four weeks did not reduce the blood pressure of SHR,in contrast to captopril(10 mg/kg,orally),but attenuated the mRNA expression of ACE and AT1 receptor(as did captopril).In contrast,both TNGIIR and captopril enhanced the expression of AT2 receptor mRNA.There was no change in the circulating concentration of angiotensin I,but a slight decrease(about 10%)was seen in the concentration of circulating angiotensin II with TNGIIR and captopril.
基金This work was supported by the National Natural Science Funds of China(No.31901635)the National Key Research and Development Program of China(2018YFD0400301).
文摘Inhibition of beta-site APP cleaving enzyme1(BACE1)is one of the most promising therapeutic approaches for Alzheimer’s disease.To find natural products for the treatment of Alzheimer’s disease,absorption,distribution,metabolism,excretion and toxicity(ADMET)properties and in vitro BACE1 inhibitory activity of the peptides isolated from egg albumin were evaluated.Then,molecular docking and molecular dynamics simulation were used to explain the molecular mechanism of the interactions between BACE1 and peptides.The IC50 value of peptide KLPGF,with satisfactory ADMET properties,against BACE1 was(8.30±0.56)mmol/L.Molecular docking revealed that KLPGF contacted with the residues of BACE1’s active sites through twelve hydrogen bonds interactions,two hydrophobic interactions,one electrostatic interaction,and two Pi-cation interactions.The 5 ns molecular dynamics simulations confirmed that the structure of KLPGF with BACE1 was stable.Peptide KLPGF contacted the residues Lys321,Asp228,and Asn233 with stable hydrogen bonds.KLPGF may be a potential anti-BACE1 candidate.
基金financially supported by the National Natural Science Foundation of China(No.52207249)the research program of Top Talent Project of Yantai University(No.1115/2220001)+1 种基金the Yantai Basic Research Project(No.2022JCYJ04)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing(No.AMGM2021F11).
文摘Three-dimensional holey nitrogen-doped carbon matrixes decorated with molybdenum dioxide(MoO_(2))nanoparticles have been successfully synthesized via a NaCl-assisted template strategy.The obtained MoO_(2)/C composites offered multi-advantages,including higher specific surface area,more active sites,more ions/electrons transmission channels,and shorter transmission path due to the synergistic effect of the uniformly distributed MoO_(2) nanoparticles and porous carbon structure.Especially,the oxygen vacancies were introduced into the prepared composites and enhanced the Li^(+)intercalation/deintercalation process during electrochemical cycling by the Coulomb force.The existence of the local built-in electric field was proved by experimental data,differential charge density distribution,and density of states calculation.The uniquely designed structure and introduced oxygen vacancy defects endowed the MoO_(2)/C composites with excellent electrochemical properties.In view of the synergistic effect of the uniquely designed morphology and introduced oxygen vacancy defects,the MoO_(2)/C composites exhibited superior electrochemical performance of a high capacity of 918.2 mAh g^(-1) at 0.1 A g^(-1) after 130 cycles,562.1 mAh g^(-1) at 1.0 A g^(-1) after 1000 cycles,and a capacity of 181.25 mAh g^(-1) even at 20.0 A g^(-1).This strategy highlights the path to promote the commercial application of MoO_(2)-based and other transition metal oxide electrodes for energy storage devices.
基金This study was financially supported by the European Horizon 2020 project“CritCat”under the grant agreement number 686053Lifeng Liu acknowledges the financial support from the Portuguese Foundation of Science and Technology(FCT)under the projects“IF/2014/01595”and“IF/01595/2014/CP1247/CT0001.”+1 种基金Isilda Amorim is thankful for the support to FCT PhD grant SFRH/BD/137546/2018Zhipeng Yu acknowledges the support of the China Scholarship Council(Grant no.201806150015).
文摘Water splitting has been proposed to be a promising approach to producing clean hydrogen fuel.The two half-reactions of water splitting,that is,the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),take place kinetically fast in solutions with completely different pH values.Enabling HER and OER to simultaneously occur under kinetically favorable conditions while using exclusively low-cost,earth-abundant electrocatalysts is highly desirable but remains a challenge.Herein,we demonstrate that using a bipolar membrane(BPM)we can accomplish HER in a strongly acidic solution and OER in a strongly basic solution,with bifunctional self-supported cobaltnickel phosphide nanowire electrodes to catalyze both reactions.Such asymmetric acid/alkaline water electrolysis can be achieved at 1.567 V to deliver a current density of 10 mA/cm2 with ca.100%Faradaic efficiency.Moreover,using an“irregular”BPM with unintentional crossover the voltage needed to afford 10 mA/cm2 can be reduced to 0.847 V,due to the assistance of electrochemical neutralization between acid and alkaline.Furthermore,we show that BPM-based asymmetric water electrolysis can be accomplished in a circulated single-cell electrolyzer delivering 10 mA/cm2 at 1.550 V and splitting water very stably for at least 25 hours,and that water electrolysis is enabled by a solar panel operating at 0.908 V(@13 mA/cm2),using an“irregular”BPM.BPMbased asymmetric water electrolysis is a promising alternative to conventional proton and anion exchange membrane water electrolysis.
基金supported by the National Natural Science Foundation of China(No.31901635)。
文摘The angiotensin-converting enzyme(ACE)inhibitory peptide NCW derived from Mizuhopecten yessoensis has been demonstrated to have significant in vivo anti-hypertensive effects,however,its anti-hypertensive mechanism is still not fully clarified.This study established a UPLC-Q-TRAP-MS/MS-based widely targeted kidney metabolomics approach to explore the changes of kidney metabolic profiles and to clarify the antihypertensive mechanism of peptide NCW in spontaneously hypertensive rats(SHRs).Multivariate statistical analysis indicated that the kidney metabolic profiles were clearly separated between the SHR-NCW and SHRUntreated groups.A total of 85 metabolites were differentially regulated,and 16 metabolites were identified as potential kidney biomarkers,e.g.,3-hydroxybutyrate,malonic acid,deoxycytidine,and L-aspartic acid.The peptide NCW might regulate kidney metabolic disorder of SHRs to alleviate hypertension by suppressing inflammation and improving nitric oxide production under the regulation of linoleic acid metabolism,folate related pathways,synthesis and degradation of ketone bodies,pyrimidine metabolism,β-alanine metabolism,and retinal metabolism.
基金supported by the National Natural Science Foundation of China(U22A20220)the China Postdoctoral Science Foundation(2023M741887).
文摘Producing renewable e-methanol from e-hydrogen and diverse carbon sources is an essential way for clean methanol preparation.Despite this,the technical and economic feasibility of different e-methanols has yet to be thoroughly compared,leaving the most promising pathway to achieve commercialization yet evident.This paper reports a preliminary analysis of the lifecycle greenhouse gas(GHG)emissions and costs of four renewable e-methanols with different carbon sources:bio-carbon,direct air capture(DAC),fossil fuel carbon capture(FFCC),and fossil.The results indicate that renewable e-methanol costs(4167−10250 CNY/tonne)2−4 times the market rate of grey methanol.However,with the carbon tax and the projected decline in e-H2 costs,blue e-methanol may initially replace diesel in inland navigation,followed by a shift from heavy fuel oil(HFO)to green e-methanol in ocean ship-ping.Furthermore,the e-H2 cost and the availability of green carbon are vital factors affecting cost-effectiveness.A reduction in e-H2 cost from 2.1 CNY/Nm3 to 1.1 CNY/Nm3 resulting from a transition from an annual to a daily scheduling period,could lower e-methanol costs by 1200 to 2100 CNY.This paper also provides an in-depth discussion on the challenges and opportunities associated with the various green carbon sources.
基金financial support of China Scholarship Council,China(Grant No.201806150015)the financial support of the Portuguese Foundation of Science and Technology through TACIT project(Grant No.02/SAICT/2017/028837)the National Innovation Agency of Portugal through Baterias 2030 project(Grant No.POCI-01-0247FEDER-046109)to this work。
文摘The small organic molecule electro-oxidation(OMEO) and the hydrogen evolution(HER) are two important half-reactions in direct liquid fuel cells(DLFCs) and water electrolyzers,respectively,whose performance is largely hindered by the low activity and poor stability of electrocatalysts.Herein,we demonstrate that a simple phosphorization treatment of commercially available palladium-nickel(PdNi) catalysts results in multifunctional ternary palladium nickel phosphide(PdNiP) catalysts,which exhibit substantially enhanced electrocatalytic activity and stability for HER and OMEO of a number of molecules including formic acid,methanol,ethanol,and ethylene glycol,in acidic and/or alkaline media.The improved performance results from the modification of electronic structure of palladium and nickel by the introduced phosphorus and the enhanced corrosion resistance of PdNiP.The simple phosphorization approach reported here allows for mass production of highly-active OMEO and HER electrocatalysts,holding substantial promise for their large-scale application in direct liquid fuel cells and water electrolyzers.
文摘Hydrogen(H_(2))production through proton exchange membrane(PEM)water electrolysis represents a promising avenue for creating sustainable fuel due to its high efficiency and operational flexibility,which makes it suitable for integration with renewable energy sources.However,the widespread adoption of PEM electrolysis is critically hindered by the dependence on iridium-based catalysts for the oxygen evolution reaction(OER).
基金supported by the National Natural Science Foundation of China(grant nos.52271211 and 52072120)the Science and Technology Innovation Program of Hunan Province(grant no.2023RC3185)in China+1 种基金the Hunan Provincial Natural Science Foundation Regional Joint Fund(grant no.2024JJ7205)in Chinathe HORIZON-Marie Skłodowska-Curie Actions-2021-PF(grant no.101065098)in the European Union.
文摘Single-atom catalysts(SACs)have emerged as a transformative technology for electrochemical energy conversion,offering exceptional atomic utilization,precise active sites,and tunable electronic properties.This perspective explores the potential of SACs in advancing key electrochemical applications,including fuel cells,electrolyzers,and sustainable chemical production systems.We examine state-of-the-art synthesis methods that enable precise control over atomic dispersion and catalytic activity,as well as mechanistic insights that enhance our understanding of their superior performance.Additionally,the environmental and economic benefits of SACs,such as reduced resource consumption and enhanced durability,are highlighted.Despite their promising attributes,challenges related to stability,scalability,and cost-effective production remain.We discuss these challenges and outline future research directions needed to fully realize the potential of SACs in sustainable energy systems.By addressing these hurdles,SACs could play a pivotal role in the transition to cleaner,more efficient global energy solutions.