A CaCO_(3)coating with good anticorrosion and adhesion performance was fabricated via ultrasound-assisted chemical conversion on AZ41 magnesium alloy,with a water-bath treated coating as a control.The coating formed o...A CaCO_(3)coating with good anticorrosion and adhesion performance was fabricated via ultrasound-assisted chemical conversion on AZ41 magnesium alloy,with a water-bath treated coating as a control.The coating formed on AZ41 mainly consists of an outer CaCO_(3)layer and an inner(Ca,Mg)CO_(3)layer.Surface characterizations were carried out to obtain the morphology and the chemical composition,mechanical tests were also adopted to assess the hardness and the adhesion of the coating prepared.Afterwards,the long-term corrosion resistance was investigated via electrochemical methods in the chloride-containing Portland cement system.Results show that the ultrasound-assisted coating exhibits higher mechanical properties.In addition,the corrosion resistance of the ultrasound-assisted coating is also higher than that of the bare AZ41 alloy and the water-bath treated coating.This could be due to the formation of a much more compact CaCO_(3)coating on AZ41 Mg alloy,which is mainly benefit from the assistance of the ultrasound.Ultrasound accelerates the nucleation of CaCO_(3)crystals and assists the removal of hydrogen bubbles.Additionally,corrosion mechanism was suggested and discussed for the CaCO_(3)coating.展开更多
Background:Diabetes retinopathy(DR)is a complication of diabetes that affects patients’vision.Previous studies have found blueberry anthocyanins extract(BAE)can inhibit the progression of DR,but its mechanism is not ...Background:Diabetes retinopathy(DR)is a complication of diabetes that affects patients’vision.Previous studies have found blueberry anthocyanins extract(BAE)can inhibit the progression of DR,but its mechanism is not completely clear.Methods:To study the role of BAE in diabetes retinopathy,we treated human retinal endothelial cells(HRCECs)with 30 mM high glucose to simulate the microenvironment of diabetes retinopathy and used BAE to intervene the in vitro high glucose-induced retinopathy model.HRCEC cell viability and apoptosis rates were examined by Cell Counting Kit 8(CCK-8)assay and flow cytometry assay.The binding sites between miR-33 and glucocorticoid-induced transcript 1(GLCCI1)were assessed by luciferase reporter assay.Retinal neovascularization and oxidative stress contribute to diabetic retinopathy.The tubule formation assay was applied to detect the retinal neovascularization.The oxidative stress in the HRCECs was manifested by the reactive oxygen species(ROS)level,the malondialdehyde(MDA)level,and the superoxide dismutase(SOD)activity.Results:Compared with HRCECs cells cultured under normal conditions,high glucose(HG)can induce oxidative stress in HRCRCs,specifically manifested in the increase of ROS and MDA levels,and the decrease of SOD activity.BAE relieved the tubule formation in n the HRCEC.BAE also relieved the ROS and MDA levels and increased the SOD activity.Luciferase reporter assay revealed that GLCCI1 is a target molecule downstream of miR-33.In HRCEC,BAE significantly inhibited the expression of miR-33 induced by HG.miR-33 mimic inhibited the BAE’s effects on oxidative stress and angiogenesis in an in vitro high glucose-induced retinopathy model.Conclusion:BAE alleviated the oxidative stress and microangiogenesis of HRCEC by regulating the miR-33/GLCCI1 axis.展开更多
Ocular trauma is a leading cause of vision impairment and blindness worldwide,significantly affecting quality of life[1].Each year,an estimated 55 million ocular injuries occur worldwide,with nearly 19 million resulti...Ocular trauma is a leading cause of vision impairment and blindness worldwide,significantly affecting quality of life[1].Each year,an estimated 55 million ocular injuries occur worldwide,with nearly 19 million resulting in vision loss or blindness and approximately 750,000 requiring hospitalization[2,3].展开更多
基金the National Key Research and Development Program of China(Grant No.2021YFB3701100)the Natural Science Foundation Commission of China(Grant Nos.U20A20234and 51874062)+1 种基金Chongqing Foundation and Advanced Research Project(Grant No.cstc2019jcyj-zdxmX 0010)the Science and Technology Major Project of Shanxi Province(Grant No.20191102008)。
文摘A CaCO_(3)coating with good anticorrosion and adhesion performance was fabricated via ultrasound-assisted chemical conversion on AZ41 magnesium alloy,with a water-bath treated coating as a control.The coating formed on AZ41 mainly consists of an outer CaCO_(3)layer and an inner(Ca,Mg)CO_(3)layer.Surface characterizations were carried out to obtain the morphology and the chemical composition,mechanical tests were also adopted to assess the hardness and the adhesion of the coating prepared.Afterwards,the long-term corrosion resistance was investigated via electrochemical methods in the chloride-containing Portland cement system.Results show that the ultrasound-assisted coating exhibits higher mechanical properties.In addition,the corrosion resistance of the ultrasound-assisted coating is also higher than that of the bare AZ41 alloy and the water-bath treated coating.This could be due to the formation of a much more compact CaCO_(3)coating on AZ41 Mg alloy,which is mainly benefit from the assistance of the ultrasound.Ultrasound accelerates the nucleation of CaCO_(3)crystals and assists the removal of hydrogen bubbles.Additionally,corrosion mechanism was suggested and discussed for the CaCO_(3)coating.
基金supported by the Science and Technology Project of Jiangxi Provincial Administration of Traditional Chinese Medicine(Grant Number:2022A359).
文摘Background:Diabetes retinopathy(DR)is a complication of diabetes that affects patients’vision.Previous studies have found blueberry anthocyanins extract(BAE)can inhibit the progression of DR,but its mechanism is not completely clear.Methods:To study the role of BAE in diabetes retinopathy,we treated human retinal endothelial cells(HRCECs)with 30 mM high glucose to simulate the microenvironment of diabetes retinopathy and used BAE to intervene the in vitro high glucose-induced retinopathy model.HRCEC cell viability and apoptosis rates were examined by Cell Counting Kit 8(CCK-8)assay and flow cytometry assay.The binding sites between miR-33 and glucocorticoid-induced transcript 1(GLCCI1)were assessed by luciferase reporter assay.Retinal neovascularization and oxidative stress contribute to diabetic retinopathy.The tubule formation assay was applied to detect the retinal neovascularization.The oxidative stress in the HRCECs was manifested by the reactive oxygen species(ROS)level,the malondialdehyde(MDA)level,and the superoxide dismutase(SOD)activity.Results:Compared with HRCECs cells cultured under normal conditions,high glucose(HG)can induce oxidative stress in HRCRCs,specifically manifested in the increase of ROS and MDA levels,and the decrease of SOD activity.BAE relieved the tubule formation in n the HRCEC.BAE also relieved the ROS and MDA levels and increased the SOD activity.Luciferase reporter assay revealed that GLCCI1 is a target molecule downstream of miR-33.In HRCEC,BAE significantly inhibited the expression of miR-33 induced by HG.miR-33 mimic inhibited the BAE’s effects on oxidative stress and angiogenesis in an in vitro high glucose-induced retinopathy model.Conclusion:BAE alleviated the oxidative stress and microangiogenesis of HRCEC by regulating the miR-33/GLCCI1 axis.
基金supported by the National Natural Science Foundation of China(82330031)。
文摘Ocular trauma is a leading cause of vision impairment and blindness worldwide,significantly affecting quality of life[1].Each year,an estimated 55 million ocular injuries occur worldwide,with nearly 19 million resulting in vision loss or blindness and approximately 750,000 requiring hospitalization[2,3].