The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind...The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Offthe shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated offthe shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s^-, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s^-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that ialf frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline. Offthe shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1.035fin the mixed layer to 1.02fin the thermocline, implying a trend for the shift in frequency of the oscillations towards f with the depth.展开更多
This study applies the wavelet analysis to the tidal gauge records, alongshore winds, atmospheric temperature and pressure along the China coast in winter 2008. The analysis results show three events of sea level osci...This study applies the wavelet analysis to the tidal gauge records, alongshore winds, atmospheric temperature and pressure along the China coast in winter 2008. The analysis results show three events of sea level oscillations (SLOs) on the shelf induced by winter storms. The first event occurred from January 9 to 21. The SLO periods were double-peaked at 1.6-5.3 and 7.0-16.0 d with the power densities of 0.04-0.05 and 0.10-0.15 m^2.d, respectively. The second event occurred from February 5 to 18. The SLO period was single-peaked at 2.3-3.5 d with power density of 0.03-0.04 m^2.d. The third event occurred from February 20 to March 8. The SLO periods were double- peaked at 1.5-4.3 and 6.1-8.2 d with the power densities of 0.08-0.11 and 0.02-0.08 me.d, respectively. The SLOs propagated along the coast from Zhejiang in north to Guangdong in south. The phase speeds ranged about 9-29 m/s from Kanmen to Pingtan, 5-11 m/s from Xiamen to Huizhou and 11-22 m/s from Huizhou to Shuidong. The dispersion relation of the SLOs shows their nature of coastal-trapped wave.展开更多
The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) d...The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.展开更多
Cruise observations with CTD (conductivity-temperature-depth) profiler were carried out in the southern Taiwan Strait in the summer of 2005. Using the cruise data, two-dimensional maps of salinity and temperature di...Cruise observations with CTD (conductivity-temperature-depth) profiler were carried out in the southern Taiwan Strait in the summer of 2005. Using the cruise data, two-dimensional maps of salinity and temperature distributions at depths of 5, 10, 15, 20, and 30 m were generated. The maps show a low salinity tongue sandwiched by low temperature and high salinity waters on the shallow water side and high temperature and high salinity waters on the deep water side. The further analysis indicates that the low salinity water has a nature of river-diluted water. A possible source of the diluted water is the Zhujiang (Pearl) Estuary. Meanwhile, the summer monsoon is judged as a possible driving force for this northeastward jet-like current. The coastal upwelling and the South China Sea Warm Current confine the low salinity water to flow along the central line of the strait. Previous investigations and a numerical model are used to verify that the upstream of the low salinity current is the Zhujiang Estuary. Thus, the low salinity tongue is produced by four major elements: Zhujinag Estuary diluted water, monsoon wind driving, coastal upwelling and South China Sea Warm Current modifications.展开更多
This effort aims to determine the generation source sites in the Luzon Strait for energetic, long-crest, transbasin internal waves (IW) observed in the northern South China Sea (NSCS). The roles of islands distrib...This effort aims to determine the generation source sites in the Luzon Strait for energetic, long-crest, transbasin internal waves (IW) observed in the northern South China Sea (NSCS). The roles of islands distributed on eastern side of the strait, Kuroshio, submarine ridges, shoaling thennocline, and strait configuration played in the IW generation are examined using the cruise data analysis, satellite data interpretation, and dynamical analysis. The islands and channels on eastern side of the strait are excluded from a list of possible IW source sites owing to their unmatched horizontal dimensions to the scale of IW crest line length, and the relative low Reynolds number. The Kuroshio has a potential to be a radiator for the long-crest IW disturbances, meanwhile, the Kurosbio west (east) wing absorbs the eastward (westward) propagating IW disturbance. Namely, the Kuroshio blockades the outside west-east propagating IW disturbances. The 3-D configuration of the Luzon Strait is characterized by a sudden, more than one order widening of the cross-section areas at the outlets on both sides, providing a favorable condition for IW type initial disturbance formation. In the Luzon Strait, the thermocline is featured by a westward shoaling all the year around, providing the dynamical conditions for the amplitude growth (declination) to the westward (eastward) propagating IW type disturbance. Thus, the west slope of western submarine ridge at the western outlet of the Luzon Strait is a high possibility source sites for energetic, long-crest, transbasin IWs in the NSCS. The interpretation results of satellite SAR images during a 13 a period from 1995 to 2007 provide the convincing evidence for the conclusions.展开更多
The South China Sea (SCS), in particular the northern SCS, is one of ocean areas where energetic internal solitary waves (ISWs)occur most frequently (Cai et al., 2012; Zheng, 2017). Based on the re-appearance pe...The South China Sea (SCS), in particular the northern SCS, is one of ocean areas where energetic internal solitary waves (ISWs)occur most frequently (Cai et al., 2012; Zheng, 2017). Based on the re-appearance period (RP) at an observation station, Ramp et al.(2004) divided the ISWs into two types:Type-a and Type-b. Type-a ISWs arrive regularly at the same time every day, i.e., the RP is about 24 h, and Type-b ISWs arrive about one hour late every day, i.e., the RP is about 25 h.展开更多
This study aims to explore generation mechanisms of the ocean internal wave using the dynamical analysis methods based on linear theories. Historical cruise measurements and recent synthetic aperture radar (SAR) obs...This study aims to explore generation mechanisms of the ocean internal wave using the dynamical analysis methods based on linear theories. Historical cruise measurements and recent synthetic aperture radar (SAR) observations of mesoscale eddies with diameter of several tens of kilometers to hundreds of kilometers show that the internal wave packets with wavelength of hundreds of meters to kilometer exist inside the mesoscale eddies. This coexistence phenomenon and inherent links between the two different scale processes are revealed in the solutions of governing equations and boundary conditions for the internal wave disturbance with a horizontally slowly variable amplitude in a cylindrical coordinate system. The theoretical solutions indicate that the instability of eddy current field provides the dynamical mechanism to internal wave generation. The derived dispersion relation indicates that the internal wave propagation is modified by the eddy current field structure. The energy equation of the internal waves clearly shows the internal wave energy increment comes from the eddy. The theoretical models are used to explain the observation of the mesoscale eddy-induced internal waves off the Norwegian coast. The two-dimensional waveform solution of the anticyclonic eddy-induced internal wave packet appears as ring-shaped curves, which contains the typical features of eddy stream lines. The comparison of theoretical solutions to the structure of the internal wave packets on SAR image shows a good agreement on the major features.展开更多
With moorings equipped with Acoustic Doppler Current Profilers (ADCP) in the northern South China Sea (SCS) in 2008 and 2009, we observed three near-inertial oscillation (NIO) events coded 2008a, 2009a and 2009b...With moorings equipped with Acoustic Doppler Current Profilers (ADCP) in the northern South China Sea (SCS) in 2008 and 2009, we observed three near-inertial oscillation (NIO) events coded 2008a, 2009a and 2009b induced by passages of typhoons or tropical storms. This study compares characteristics of the three NIO events. Event 2008a was the strongest one among the three, and had the longest sustaining period (15 d), while events 2009a and 2009b sustained for only 4 and 8 d, respectively. The three events were distinguished by vertical energy distribution and phase propagation. As for the frequency shift of the NIO, event 2008a had a peak frequency lower than the local Coriolis frequency (red-shift), while events 2009a and 2009b showed blue-shift. The behavior of individual NIO event is jointly decided by the typhoon disturbance and the background ocean condition. Especially the background flow plays an important role by effects of advection and modulation. The results in this study provide observational evidence of variational NIO response to background flow field. As indicated by the distribution of vorticity and effective Coriolis frequency derived from numerical modeling, the large amplitude and elongated sustaining period of event 2008a were attributed to the waveguide effect of the background shear flow. This effect redistributed the NIO energy after the typhoon passage, absorbed incident waves and trapped energy in the area of the negative vorticity. While the background flow during events 2009a and 2009b did not have such effects due to the near-zero vorticity in the mooring area.展开更多
From the analyses of the satellite altimeter Maps of Sea Level Anomaly (MSLA) data, tidal gauge sea level data and historical sea level data, this paper investigates the long-term sea level variability in the East C...From the analyses of the satellite altimeter Maps of Sea Level Anomaly (MSLA) data, tidal gauge sea level data and historical sea level data, this paper investigates the long-term sea level variability in the East China Sea (ECS). Based on the correlation analysis, we calculate the correlation coefficient between tidal gauge and the closest MSLA grid point, then generate the map of correlation coefficient of the entire ECS. The results show that the satellite altimeter MSLA data is effective to observe coastal sea level variability. An important finding is that from map of correlation coefficient we can identify the Kuroshio. The existence of Kuroshio decreases the correlation between coastal and the Pacific sea level. Kurishio likes a barrier or a wall, which blocks the effect of the Pacific and the global change. Moreover, coastal sea level in the ECS is mainly associated with local systems rather than global change. In order to calculate the long-term sea level variability trend, the empirical mode decomposition (EMD) method is applied to derive the trend on each MSLA grid point in the entire ECS. According to the 2-D distribution of the trend and rising rate, the sea level on the right side of the axis of Kuroshio rise faster than in its left side. This result supports the barrier effect of Kuroshio in the ECS. For the entire ECS, the average sea level rose 45.0 mm between 1993 and 2010, with a rising rate of (2.5_+0.4) mm/a which is slower than global average. The relatively slower sea level rising rate further proves that sea level rise in the ECS has less response to global change due to its own local system effect.展开更多
This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equatio...This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equations of the shear-flow yields the analytical solutions of the secondary circulation.The solutions indicate that a flow with a parabolic horizontal velocity shear and a sinusoidal vertical velocity shear will induce a pair of vortexes with opposite signs distributed symmetrically on the two sides of central line of a rectangular canal.In the case of the presence of surface Ekman layer with the direction of Ekman current opposite to(coincident with) the mean flow,the two vortexes converge(diverge) at the central line of canal in the upper layer and form a surface current convergent(divergent) zone along the central line of the canal.In the case of the absence of surface Ekman layer,there is no convergent(divergent) zone formed over the sea surface.The theoretical results are applied to interpretations of three convergent cases,one divergent case and statistics of 27 cases of satellite observations in the submerged sand ridge region of the Liaodong Shoal in the Bohai Sea.We found that the long,finger-like,bright patterns on SAR images are corresponding to the locations of the canals(or tidal channels) formed by two adjacent sand ridges rather than the sand ridges themselves.展开更多
The South China Sea(SCS),the largest marginal sea of the Northwest Pacific Ocean,is characterized by frequent occurrence of energetic mesoscale eddies.The eddy diameters range from 100 to 300 km.The eddy lifespan va...The South China Sea(SCS),the largest marginal sea of the Northwest Pacific Ocean,is characterized by frequent occurrence of energetic mesoscale eddies.The eddy diameters range from 100 to 300 km.The eddy lifespan varies from several days to several months with the longest time of seven months(Zheng et al.,2017).The eddy disturbance reaches down to the ocean bottom layer.展开更多
Internal waves propagate along wave beams that are inclined with respect to the horizontal plane. It is conjectured that the internal waves generated in the Luzon Strait may be confined between the double ridges in th...Internal waves propagate along wave beams that are inclined with respect to the horizontal plane. It is conjectured that the internal waves generated in the Luzon Strait may be confined between the double ridges in the strait and concentrate to a closed trajectory, the so-called internal wave attractor, due to the reflection of wave beams from the lateral boundaries, sea surface and bottom. This work carried out two experiments using a three dimensional non-hydrostatic general circulation model, MITgcm, to investigate the possibility that the ridges in the Lnzon Strait allows for internal wave attractors. Baroclinic current in both of the experiments demonstrate the forming of ring-like patterns in some section around 20° and 21°N, indicating that the development of the internal wave attractors are allowed in the Luzon Strait. The different resolutions and initial conditions in the two experiments also reveal that the internal-wave-attractor phenomenon is robust in this region.展开更多
In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations ...In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations with sea surface wind fields and surface weather maps,the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front.The authors define the waves as atmospheric frontal gravity waves.The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008.A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves.The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images.The CMOD-5(C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV(transmitted vertical and received vertical) for ENVISAT and HH(transmitted horizontally and received horizontally) for RADARSAT-1.A reasonable agreement between the analytical solution and the SAR observation is reached.This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves,coastal lee waves,and upstream Atmospheric Gravity Waves(AGW).展开更多
Drilling rig Deepwater Horizon in the Gulf of Mexico, leased by BP PLC from Transocean Ltd., exploded and caught on fire on April 20, 2010. The drilling location is at some 50 miles (80 kilometers) off the coast of ...Drilling rig Deepwater Horizon in the Gulf of Mexico, leased by BP PLC from Transocean Ltd., exploded and caught on fire on April 20, 2010. The drilling location is at some 50 miles (80 kilometers) off the coast of Louisiana, USA. The rig sank on April 22. Since then, oil has been pouring into the Gulf from the blown-out undersea well.展开更多
In this universe, the earth is a unique breeding ground for living beings. It bares the evolutions, sustains the survival and enriches the development of human species. The studies of history have indicated that minut...In this universe, the earth is a unique breeding ground for living beings. It bares the evolutions, sustains the survival and enriches the development of human species. The studies of history have indicated that minute changes of the earth' s environment may have caused great impacts on the vulnerable balanced ecological systems, endanger the living conditions for human beings and associated cultures. Thus, understanding the nature's governing rules of the earth, and clarifying its fundamental laws of sciences are everlasting research topics for the human pursuits.展开更多
文摘The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Offthe shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated offthe shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s^-, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s^-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that ialf frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline. Offthe shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1.035fin the mixed layer to 1.02fin the thermocline, implying a trend for the shift in frequency of the oscillations towards f with the depth.
基金The National Basic Research Program of China under contract No.2015CB954004the Natural Science Foundation of China under contract Nos 41276006 and U1405233+1 种基金the US National Science Foundation Award under contract No.AGS-1061998(for Zheng)the China Scholarship Council under contract No.201306310082
文摘This study applies the wavelet analysis to the tidal gauge records, alongshore winds, atmospheric temperature and pressure along the China coast in winter 2008. The analysis results show three events of sea level oscillations (SLOs) on the shelf induced by winter storms. The first event occurred from January 9 to 21. The SLO periods were double-peaked at 1.6-5.3 and 7.0-16.0 d with the power densities of 0.04-0.05 and 0.10-0.15 m^2.d, respectively. The second event occurred from February 5 to 18. The SLO period was single-peaked at 2.3-3.5 d with power density of 0.03-0.04 m^2.d. The third event occurred from February 20 to March 8. The SLO periods were double- peaked at 1.5-4.3 and 6.1-8.2 d with the power densities of 0.08-0.11 and 0.02-0.08 me.d, respectively. The SLOs propagated along the coast from Zhejiang in north to Guangdong in south. The phase speeds ranged about 9-29 m/s from Kanmen to Pingtan, 5-11 m/s from Xiamen to Huizhou and 11-22 m/s from Huizhou to Shuidong. The dispersion relation of the SLOs shows their nature of coastal-trapped wave.
基金Research Grant Council under contract No.461907Innovation and Technology Commission under contract No.GHP/026/06+1 种基金partly by China Postdoctoral Science Foundation under contract No.2008041345 for ChengONR under contract NosN00014-05-1-0328 and N00014-05-1-0606 for Zheng
文摘The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.
基金supported by the National Natural Science Foundation of China under contract Nos 40331004,40576015, 40810069004 and 40821063the MEL Open Project MEL0506+1 种基金partially supported by the ONR through grants N00014-05-1-0328 and N00014-05-1-0606the NSF through Grant 071003-9222 (for Zheng, any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the NSF)
文摘Cruise observations with CTD (conductivity-temperature-depth) profiler were carried out in the southern Taiwan Strait in the summer of 2005. Using the cruise data, two-dimensional maps of salinity and temperature distributions at depths of 5, 10, 15, 20, and 30 m were generated. The maps show a low salinity tongue sandwiched by low temperature and high salinity waters on the shallow water side and high temperature and high salinity waters on the deep water side. The further analysis indicates that the low salinity water has a nature of river-diluted water. A possible source of the diluted water is the Zhujiang (Pearl) Estuary. Meanwhile, the summer monsoon is judged as a possible driving force for this northeastward jet-like current. The coastal upwelling and the South China Sea Warm Current confine the low salinity water to flow along the central line of the strait. Previous investigations and a numerical model are used to verify that the upstream of the low salinity current is the Zhujiang Estuary. Thus, the low salinity tongue is produced by four major elements: Zhujinag Estuary diluted water, monsoon wind driving, coastal upwelling and South China Sea Warm Current modifications.
基金The ONR under contract Nos N00014-05-1-0328and N00014-05-1-0606the NASAJPLof USAunder contract No.NMO710968(for Zheng)the National Natural Science Foundations of China under contract No.40406009(for Hu)
文摘This effort aims to determine the generation source sites in the Luzon Strait for energetic, long-crest, transbasin internal waves (IW) observed in the northern South China Sea (NSCS). The roles of islands distributed on eastern side of the strait, Kuroshio, submarine ridges, shoaling thennocline, and strait configuration played in the IW generation are examined using the cruise data analysis, satellite data interpretation, and dynamical analysis. The islands and channels on eastern side of the strait are excluded from a list of possible IW source sites owing to their unmatched horizontal dimensions to the scale of IW crest line length, and the relative low Reynolds number. The Kuroshio has a potential to be a radiator for the long-crest IW disturbances, meanwhile, the Kurosbio west (east) wing absorbs the eastward (westward) propagating IW disturbance. Namely, the Kuroshio blockades the outside west-east propagating IW disturbances. The 3-D configuration of the Luzon Strait is characterized by a sudden, more than one order widening of the cross-section areas at the outlets on both sides, providing a favorable condition for IW type initial disturbance formation. In the Luzon Strait, the thermocline is featured by a westward shoaling all the year around, providing the dynamical conditions for the amplitude growth (declination) to the westward (eastward) propagating IW type disturbance. Thus, the west slope of western submarine ridge at the western outlet of the Luzon Strait is a high possibility source sites for energetic, long-crest, transbasin IWs in the NSCS. The interpretation results of satellite SAR images during a 13 a period from 1995 to 2007 provide the convincing evidence for the conclusions.
基金The National Science and Technology Major Project of China under contract No.2016ZX05057015the National Natural Science Foundation of China under contract Nos 41376038 and 40406009+3 种基金the NSFC-Shandong Joint Fund for Marine Science Research Centers of China under contract No.U1606405the National Program on Global Change and Air-Sea Interaction of China under contract Nos GASI-03-01-01-02,GASI-02-IND-STSsum and GASI-IPOVAI-01-05the Public Science and Technology Research Funds Projects of Ocean of China under contract No.200905024the National Key Scientific Instrument and Equipment Development Projects of China under contract No.2012YQ12003908
文摘The South China Sea (SCS), in particular the northern SCS, is one of ocean areas where energetic internal solitary waves (ISWs)occur most frequently (Cai et al., 2012; Zheng, 2017). Based on the re-appearance period (RP) at an observation station, Ramp et al.(2004) divided the ISWs into two types:Type-a and Type-b. Type-a ISWs arrive regularly at the same time every day, i.e., the RP is about 24 h, and Type-b ISWs arrive about one hour late every day, i.e., the RP is about 25 h.
基金The RGC under contract No.461907the ONR under contract Nos N00014-05-1-0328and N00014-05-1-0606+1 种基金the SFMSBRP under contract No.973-2007CB411807the NASA JPL under contract No.NMO710968
文摘This study aims to explore generation mechanisms of the ocean internal wave using the dynamical analysis methods based on linear theories. Historical cruise measurements and recent synthetic aperture radar (SAR) observations of mesoscale eddies with diameter of several tens of kilometers to hundreds of kilometers show that the internal wave packets with wavelength of hundreds of meters to kilometer exist inside the mesoscale eddies. This coexistence phenomenon and inherent links between the two different scale processes are revealed in the solutions of governing equations and boundary conditions for the internal wave disturbance with a horizontally slowly variable amplitude in a cylindrical coordinate system. The theoretical solutions indicate that the instability of eddy current field provides the dynamical mechanism to internal wave generation. The derived dispersion relation indicates that the internal wave propagation is modified by the eddy current field structure. The energy equation of the internal waves clearly shows the internal wave energy increment comes from the eddy. The theoretical models are used to explain the observation of the mesoscale eddy-induced internal waves off the Norwegian coast. The two-dimensional waveform solution of the anticyclonic eddy-induced internal wave packet appears as ring-shaped curves, which contains the typical features of eddy stream lines. The comparison of theoretical solutions to the structure of the internal wave packets on SAR image shows a good agreement on the major features.
基金The National Basic Research Program(973 Program) of China under contract Nos 2015CB954004 and 2009CB421208the National Natural Science Foundation of China under contract Nos 41276006U1405233 and 40976013the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences under contract No.KLOCAW1307
文摘With moorings equipped with Acoustic Doppler Current Profilers (ADCP) in the northern South China Sea (SCS) in 2008 and 2009, we observed three near-inertial oscillation (NIO) events coded 2008a, 2009a and 2009b induced by passages of typhoons or tropical storms. This study compares characteristics of the three NIO events. Event 2008a was the strongest one among the three, and had the longest sustaining period (15 d), while events 2009a and 2009b sustained for only 4 and 8 d, respectively. The three events were distinguished by vertical energy distribution and phase propagation. As for the frequency shift of the NIO, event 2008a had a peak frequency lower than the local Coriolis frequency (red-shift), while events 2009a and 2009b showed blue-shift. The behavior of individual NIO event is jointly decided by the typhoon disturbance and the background ocean condition. Especially the background flow plays an important role by effects of advection and modulation. The results in this study provide observational evidence of variational NIO response to background flow field. As indicated by the distribution of vorticity and effective Coriolis frequency derived from numerical modeling, the large amplitude and elongated sustaining period of event 2008a were attributed to the waveguide effect of the background shear flow. This effect redistributed the NIO energy after the typhoon passage, absorbed incident waves and trapped energy in the area of the negative vorticity. While the background flow during events 2009a and 2009b did not have such effects due to the near-zero vorticity in the mooring area.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 201105032 and 201305032the National High Technology Research and Development Program(863 Program) of China under contract No.2013AA09A505the National Natural Science Foundation of China under contract No.41506207
文摘From the analyses of the satellite altimeter Maps of Sea Level Anomaly (MSLA) data, tidal gauge sea level data and historical sea level data, this paper investigates the long-term sea level variability in the East China Sea (ECS). Based on the correlation analysis, we calculate the correlation coefficient between tidal gauge and the closest MSLA grid point, then generate the map of correlation coefficient of the entire ECS. The results show that the satellite altimeter MSLA data is effective to observe coastal sea level variability. An important finding is that from map of correlation coefficient we can identify the Kuroshio. The existence of Kuroshio decreases the correlation between coastal and the Pacific sea level. Kurishio likes a barrier or a wall, which blocks the effect of the Pacific and the global change. Moreover, coastal sea level in the ECS is mainly associated with local systems rather than global change. In order to calculate the long-term sea level variability trend, the empirical mode decomposition (EMD) method is applied to derive the trend on each MSLA grid point in the entire ECS. According to the 2-D distribution of the trend and rising rate, the sea level on the right side of the axis of Kuroshio rise faster than in its left side. This result supports the barrier effect of Kuroshio in the ECS. For the entire ECS, the average sea level rose 45.0 mm between 1993 and 2010, with a rising rate of (2.5_+0.4) mm/a which is slower than global average. The relatively slower sea level rising rate further proves that sea level rise in the ECS has less response to global change due to its own local system effect.
基金supported by Academician Foundation of China (for Yuan and Zheng)Shanghai Science and Technology Committee Program - Special for EXPO under Grant No.10DZ0581600 and Grant SHUES2011A07 from Shanghai Institute of Urban Ecology and Sustainability(for Zhao)+1 种基金partially supported by US National Sci-ence Foundation Award 0962107 (for Zheng and Liu)Award 1061998 (for Zheng)
文摘This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equations of the shear-flow yields the analytical solutions of the secondary circulation.The solutions indicate that a flow with a parabolic horizontal velocity shear and a sinusoidal vertical velocity shear will induce a pair of vortexes with opposite signs distributed symmetrically on the two sides of central line of a rectangular canal.In the case of the presence of surface Ekman layer with the direction of Ekman current opposite to(coincident with) the mean flow,the two vortexes converge(diverge) at the central line of canal in the upper layer and form a surface current convergent(divergent) zone along the central line of the canal.In the case of the absence of surface Ekman layer,there is no convergent(divergent) zone formed over the sea surface.The theoretical results are applied to interpretations of three convergent cases,one divergent case and statistics of 27 cases of satellite observations in the submerged sand ridge region of the Liaodong Shoal in the Bohai Sea.We found that the long,finger-like,bright patterns on SAR images are corresponding to the locations of the canals(or tidal channels) formed by two adjacent sand ridges rather than the sand ridges themselves.
基金The National Natural Science Foundation of China under contract Nos 41476009 and U1405233the IPOVAR Project under contract Nos GASI-IPOVAI-01-02 and GASI-02-SCS-YGST2-02the Foundation of Guangdong Province for Outstanding Young Teachers in University under contract No.YQ2015088
文摘The South China Sea(SCS),the largest marginal sea of the Northwest Pacific Ocean,is characterized by frequent occurrence of energetic mesoscale eddies.The eddy diameters range from 100 to 300 km.The eddy lifespan varies from several days to several months with the longest time of seven months(Zheng et al.,2017).The eddy disturbance reaches down to the ocean bottom layer.
基金The National Basic Research Program(973 Program) of China under contract No.2011CB403502the Major National Scientific Research Projects of China under contract No.2012CB957803+2 种基金the National Natural Science Foundation of China under contract No41476024the National Natural Science Foundation of China-Shandong Joint Fund of Marine Science Research Centers of China under contract No.U1406404the Foundation for Outstanding Young and Middle-aged Scientists in Shandong Province of China under contract No.BS2011HZ019
文摘Internal waves propagate along wave beams that are inclined with respect to the horizontal plane. It is conjectured that the internal waves generated in the Luzon Strait may be confined between the double ridges in the strait and concentrate to a closed trajectory, the so-called internal wave attractor, due to the reflection of wave beams from the lateral boundaries, sea surface and bottom. This work carried out two experiments using a three dimensional non-hydrostatic general circulation model, MITgcm, to investigate the possibility that the ridges in the Lnzon Strait allows for internal wave attractors. Baroclinic current in both of the experiments demonstrate the forming of ring-like patterns in some section around 20° and 21°N, indicating that the development of the internal wave attractors are allowed in the Luzon Strait. The different resolutions and initial conditions in the two experiments also reveal that the internal-wave-attractor phenomenon is robust in this region.
基金RADARSAT-1 data were obtained under the NASA RADARSAT ADRO-2 Program (Project RADARSAT-0011-0071) and processed by the Alaska Satellite FacilityThe ASAR images were provided by the European Space Agency under ENVISAT Projects 141 and 6133
文摘In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations with sea surface wind fields and surface weather maps,the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front.The authors define the waves as atmospheric frontal gravity waves.The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008.A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves.The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images.The CMOD-5(C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV(transmitted vertical and received vertical) for ENVISAT and HH(transmitted horizontally and received horizontally) for RADARSAT-1.A reasonable agreement between the analytical solution and the SAR observation is reached.This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves,coastal lee waves,and upstream Atmospheric Gravity Waves(AGW).
文摘Drilling rig Deepwater Horizon in the Gulf of Mexico, leased by BP PLC from Transocean Ltd., exploded and caught on fire on April 20, 2010. The drilling location is at some 50 miles (80 kilometers) off the coast of Louisiana, USA. The rig sank on April 22. Since then, oil has been pouring into the Gulf from the blown-out undersea well.
文摘In this universe, the earth is a unique breeding ground for living beings. It bares the evolutions, sustains the survival and enriches the development of human species. The studies of history have indicated that minute changes of the earth' s environment may have caused great impacts on the vulnerable balanced ecological systems, endanger the living conditions for human beings and associated cultures. Thus, understanding the nature's governing rules of the earth, and clarifying its fundamental laws of sciences are everlasting research topics for the human pursuits.