The Liaohe River Basin(LRB)in Northeast China,a critical agricultural and industrial zone,has faced escalating water resource pressures in recent decades due to rapid urbanization,intensified land use changes,and clim...The Liaohe River Basin(LRB)in Northeast China,a critical agricultural and industrial zone,has faced escalating water resource pressures in recent decades due to rapid urbanization,intensified land use changes,and climate variability.Understanding the spatiotemporal dynamics of water yield and its driving factors is essential for sustainable water resource management in this ecologically sensitive region.This study employed the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to quantify the spatiotemporal patterns of water yield in the LRB(dividing into six sub-basins from east to west:East Liaohe River Basin(ELRB),Taizi River Basin(TRB),Middle Liaohe River Basin(MLRB),West Liaohe River Basin(WLRB),Xinkai River Basin(XRB),and Wulijimuren River Basin(WRB))from 1993 to 2022,with a focus on the impacts of climate change and land use cover change(LUCC).Results revealed that the LRB had an average annual precipitation of 483.15 mm,with an average annual water yield of 247.54 mm,both showing significant upward trend over the 30-a period.Spatially,water yield demonstrated significant heterogeneity,with higher values in southeastern sub-basins and lower values in northwestern sub-basins.The TRB exhibited the highest water yield due to abundant precipitation and favorable topography,while the WRB recorded the lowest water yield owing to arid conditions and sparse vegetation.Precipitation played a significant role in shaping the annual fluctuations and total volume of water yield,with its variability exerting substantially greater impacts than actual evapotranspiration(AET)and LUCC.However,LUCC,particularly cultivated land expansion and grassland reduction,significantly reshaped the spatial distribution of water yield by modifying surface runoff and infiltration patterns.This study provides critical insights into the spatiotemporal dynamics of water yield in the LRB,emphasizing the synergistic effects of climate change and land use change,which are pivotal for optimizing water resource management and advancing regional ecological conservation.展开更多
基于SWAT(soil and water assessment tool)模型,对东江流域的水文过程进行了模拟,并分别采用1990年、2000年、2009年土地利用数据驱动模型,定量评价东江流域1990—2009年土地利用变化对流域水文过程产生的影响。结果表明:(1)流域出口...基于SWAT(soil and water assessment tool)模型,对东江流域的水文过程进行了模拟,并分别采用1990年、2000年、2009年土地利用数据驱动模型,定量评价东江流域1990—2009年土地利用变化对流域水文过程产生的影响。结果表明:(1)流域出口月径流模拟率定期确定性系数R2为0.89,Nash-Sutcliffe效率系数ENS为0.87;验证期R2为0.88,ENS为0.87,东江流域SWAT模型径流模拟精度较高;近年来流域林地、草地面积减少,园地、城镇用地、水域面积增加。(2)在此影响下,东江流域单位面积侧向流降低了9.66 mm、基流降低了4.86 mm,地表径流增加了8.26 mm、实际蒸发增加了6.40 mm、潜在蒸发增加了4.40 mm;径流总量共减少了6.38 mm。(3)地表径流、侧向流对土地利用变化的响应在雨季更为敏感,实际蒸发、潜在蒸发及径流总量对土地利用变化的响应在旱季更为敏感。展开更多
基金funded by the Liaoning Provincial Social Science Planning Fund(L22AYJ010).
文摘The Liaohe River Basin(LRB)in Northeast China,a critical agricultural and industrial zone,has faced escalating water resource pressures in recent decades due to rapid urbanization,intensified land use changes,and climate variability.Understanding the spatiotemporal dynamics of water yield and its driving factors is essential for sustainable water resource management in this ecologically sensitive region.This study employed the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to quantify the spatiotemporal patterns of water yield in the LRB(dividing into six sub-basins from east to west:East Liaohe River Basin(ELRB),Taizi River Basin(TRB),Middle Liaohe River Basin(MLRB),West Liaohe River Basin(WLRB),Xinkai River Basin(XRB),and Wulijimuren River Basin(WRB))from 1993 to 2022,with a focus on the impacts of climate change and land use cover change(LUCC).Results revealed that the LRB had an average annual precipitation of 483.15 mm,with an average annual water yield of 247.54 mm,both showing significant upward trend over the 30-a period.Spatially,water yield demonstrated significant heterogeneity,with higher values in southeastern sub-basins and lower values in northwestern sub-basins.The TRB exhibited the highest water yield due to abundant precipitation and favorable topography,while the WRB recorded the lowest water yield owing to arid conditions and sparse vegetation.Precipitation played a significant role in shaping the annual fluctuations and total volume of water yield,with its variability exerting substantially greater impacts than actual evapotranspiration(AET)and LUCC.However,LUCC,particularly cultivated land expansion and grassland reduction,significantly reshaped the spatial distribution of water yield by modifying surface runoff and infiltration patterns.This study provides critical insights into the spatiotemporal dynamics of water yield in the LRB,emphasizing the synergistic effects of climate change and land use change,which are pivotal for optimizing water resource management and advancing regional ecological conservation.