This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,suc...This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,such as decoders,pose significant challenges due to their interlayer dependencies and high computational demands,especially under edge resource constraints.To address these challenges,we propose a two-phase optimization algorithm that first handles dependencyaware task allocation and subsequently optimizes energy consumption.By modeling the inference process using directed acyclic graphs(DAGs)and applying constraint relaxation techniques,our approach effectively reduces execution latency and energy usage.Experimental results demonstrate that our method achieves a reduction of up to 20%in task completion time and approximately 30%savings in energy consumption compared to traditional methods.These outcomes underscore our solution’s robustness in managing complex sequential dependencies and dynamic MEC conditions,enhancing quality of service.Thus,our work presents a practical and efficient resource optimization strategy for deploying models in resourceconstrained MEC scenarios.展开更多
The influence of the low voltage pulsed magnetic field(LVPMF)on the microstructure transition of K4169 superalloy was investigated.The gradient microstructure of K4169 superalloy composed of columnar grains,coarse gra...The influence of the low voltage pulsed magnetic field(LVPMF)on the microstructure transition of K4169 superalloy was investigated.The gradient microstructure of K4169 superalloy composed of columnar grains,coarse grains,and fine grains was prepared through the combined method of LVPMF with directional solidification,which provided a new approach for the preparation of superalloy with gradient microstructure.The distribution of the Lorentz force and flow field under LVPMF effect was simulated,and therefore the microstructure transition mechanism was revealed.Results show that the microstructure transition should be attributed to the coupling effects of the Lorentz force and forced convection.展开更多
文摘This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,such as decoders,pose significant challenges due to their interlayer dependencies and high computational demands,especially under edge resource constraints.To address these challenges,we propose a two-phase optimization algorithm that first handles dependencyaware task allocation and subsequently optimizes energy consumption.By modeling the inference process using directed acyclic graphs(DAGs)and applying constraint relaxation techniques,our approach effectively reduces execution latency and energy usage.Experimental results demonstrate that our method achieves a reduction of up to 20%in task completion time and approximately 30%savings in energy consumption compared to traditional methods.These outcomes underscore our solution’s robustness in managing complex sequential dependencies and dynamic MEC conditions,enhancing quality of service.Thus,our work presents a practical and efficient resource optimization strategy for deploying models in resourceconstrained MEC scenarios.
基金National Key Research and Development Program of China(2018YFA0702900)National Science and Technology Major Project(J2019-VII-0002-0142)National Natural Science Foundation of China(51831007)。
文摘The influence of the low voltage pulsed magnetic field(LVPMF)on the microstructure transition of K4169 superalloy was investigated.The gradient microstructure of K4169 superalloy composed of columnar grains,coarse grains,and fine grains was prepared through the combined method of LVPMF with directional solidification,which provided a new approach for the preparation of superalloy with gradient microstructure.The distribution of the Lorentz force and flow field under LVPMF effect was simulated,and therefore the microstructure transition mechanism was revealed.Results show that the microstructure transition should be attributed to the coupling effects of the Lorentz force and forced convection.