Deformation kink is one of the important strengthening mechanisms of the long-period-stacking-ordered(LPSO)phase containing magnesium(Mg)alloys,while the deformation twin is generally suppressed.To optimize the mechan...Deformation kink is one of the important strengthening mechanisms of the long-period-stacking-ordered(LPSO)phase containing magnesium(Mg)alloys,while the deformation twin is generally suppressed.To optimize the mechanical properties of LPSO containing Mg alloy by simultaneously exciting kink and twin,we successfully prepared the Mg-Zn-Y-Zr alloy featuring intragranular LPSO phase and free grain boundary LPSO phase by homogenization.We unraveled the corresponding strengthening and toughening mechanisms through transmission electron microscopy characterization and theoretical analysis.The high strength and good plasticity of the homogenized alloy benefit from the synergistic deformation mechanism of multiple kinking and twining in the grains.And the activation of kinking and twinning depends on the thicknesses of LPSO lamellae and their relative spacing.These results may shed light on optimizing the design of Mg alloys regulating the microstructure of LPSO phases.展开更多
The role of melt cooling rate on the interface morphology and dislocation configuration between 18R long-period stacking ordered(LPSO)structure and Mg matrix in Mg_(97)Zn_(1)Y_(2)(at.%)alloys was investigated by atomi...The role of melt cooling rate on the interface morphology and dislocation configuration between 18R long-period stacking ordered(LPSO)structure and Mg matrix in Mg_(97)Zn_(1)Y_(2)(at.%)alloys was investigated by atomic-scale HAADF-STEM imaging.The 18R/Mg interface is step-like both in the near-equilibrium alloy and non-equilibrium alloy.Lower cooling rate makes the step size more regular and larger.Only 54R structure can be observed at the interface in the near-equilibrium alloy,and the dislocations are highly ordered.54R and 54R′structure sandwiched by b1 and b2+b3 dislocation arrays,and new dislocation configuration can be detected at the interface in the non-equilibrium alloy,but the dislocations are less ordered.18R/Mg interface containing 54R or 54R′in equilibrium width,parallel to the(010)plane,should be most stable based on elastic calculation.The segregation of solute atoms and its strong interaction with dislocations dominate the LPSO/Mg interface via diffusion-displacive transformation.展开更多
According to two properties of the life cycle and to fluctuation with parities, four mathemati- cal models, the Poisson cycle model, the cubic polyno- mial model, the modified quadratic polynomial model- I artd the mo...According to two properties of the life cycle and to fluctuation with parities, four mathemati- cal models, the Poisson cycle model, the cubic polyno- mial model, the modified quadratic polynomial model- I artd the modified quadratic polynomial model-H, were used to fit the records of litter size in Jiangquhai sows. From the viewpoint of statistics and biological significance, the modified quadratic polynomial mod- el-I was found to be the optimum model. A single traitanimal model and DFREML procedures were further used to estimate the heritability values of optimum model parameters. The results show that the heritabili- ty values for the coefficients A and B and the herita- bility value for the acme of the model pure quadric curve are larger than the heritability value for the litter size. This suggests that selection for model parameters may be more effective than direct selection for litter size.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.52101015,52171021,and 51871222)Natural Science Foundation of Hebei Province(Grant No.E2020208083)Science and Technology Research Project of Colleges and Universities in Hebei Province(Grant No.BJK2022020).
文摘Deformation kink is one of the important strengthening mechanisms of the long-period-stacking-ordered(LPSO)phase containing magnesium(Mg)alloys,while the deformation twin is generally suppressed.To optimize the mechanical properties of LPSO containing Mg alloy by simultaneously exciting kink and twin,we successfully prepared the Mg-Zn-Y-Zr alloy featuring intragranular LPSO phase and free grain boundary LPSO phase by homogenization.We unraveled the corresponding strengthening and toughening mechanisms through transmission electron microscopy characterization and theoretical analysis.The high strength and good plasticity of the homogenized alloy benefit from the synergistic deformation mechanism of multiple kinking and twining in the grains.And the activation of kinking and twinning depends on the thicknesses of LPSO lamellae and their relative spacing.These results may shed light on optimizing the design of Mg alloys regulating the microstructure of LPSO phases.
基金This work is supported by the National Natural Science Foundation of China(grant number 51801214 and 51871222)Guangxi Science and Technology Base and Talents Special Project(Guike AD20297034)+2 种基金Liaoning Provincial Natural Science Foundation(2019-MS-335)Research Start-up Funding from Guangxi University of Science and Technology(No.03200150)Natural Science Foundation of Hebei Province of China(grant number E2020208083).
文摘The role of melt cooling rate on the interface morphology and dislocation configuration between 18R long-period stacking ordered(LPSO)structure and Mg matrix in Mg_(97)Zn_(1)Y_(2)(at.%)alloys was investigated by atomic-scale HAADF-STEM imaging.The 18R/Mg interface is step-like both in the near-equilibrium alloy and non-equilibrium alloy.Lower cooling rate makes the step size more regular and larger.Only 54R structure can be observed at the interface in the near-equilibrium alloy,and the dislocations are highly ordered.54R and 54R′structure sandwiched by b1 and b2+b3 dislocation arrays,and new dislocation configuration can be detected at the interface in the non-equilibrium alloy,but the dislocations are less ordered.18R/Mg interface containing 54R or 54R′in equilibrium width,parallel to the(010)plane,should be most stable based on elastic calculation.The segregation of solute atoms and its strong interaction with dislocations dominate the LPSO/Mg interface via diffusion-displacive transformation.
文摘According to two properties of the life cycle and to fluctuation with parities, four mathemati- cal models, the Poisson cycle model, the cubic polyno- mial model, the modified quadratic polynomial model- I artd the modified quadratic polynomial model-H, were used to fit the records of litter size in Jiangquhai sows. From the viewpoint of statistics and biological significance, the modified quadratic polynomial mod- el-I was found to be the optimum model. A single traitanimal model and DFREML procedures were further used to estimate the heritability values of optimum model parameters. The results show that the heritabili- ty values for the coefficients A and B and the herita- bility value for the acme of the model pure quadric curve are larger than the heritability value for the litter size. This suggests that selection for model parameters may be more effective than direct selection for litter size.