The Euler-Bernoulli(E-B)beam theory is combined with Green-Lindsay's(G-L)generalized thermoelasticity theory to analyze the vibration of microbeams.The frequency control equation,based on the two-parameter Winkler...The Euler-Bernoulli(E-B)beam theory is combined with Green-Lindsay's(G-L)generalized thermoelasticity theory to analyze the vibration of microbeams.The frequency control equation,based on the two-parameter Winkler-Pasternak elastic foundation for simply-supported microbeams,is presented.This study investigates the effects of the side-to-thickness ratio and relaxation time parameters on the vibrational natural frequency of thermoelastic microbeam resonators.The frequencies derived from the present model are compared with those from Lord and Shulman's(L-S)theory.The fourthorder solutions for natural vibration frequencies are graphically displayed for comparison.Therefore,attention should be paid to the use of effective foundations to prevent microbeam damage caused by contraction and expansion problems caused by high temperatures.展开更多
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through a large research project(No.RGP2/80/45)。
文摘The Euler-Bernoulli(E-B)beam theory is combined with Green-Lindsay's(G-L)generalized thermoelasticity theory to analyze the vibration of microbeams.The frequency control equation,based on the two-parameter Winkler-Pasternak elastic foundation for simply-supported microbeams,is presented.This study investigates the effects of the side-to-thickness ratio and relaxation time parameters on the vibrational natural frequency of thermoelastic microbeam resonators.The frequencies derived from the present model are compared with those from Lord and Shulman's(L-S)theory.The fourthorder solutions for natural vibration frequencies are graphically displayed for comparison.Therefore,attention should be paid to the use of effective foundations to prevent microbeam damage caused by contraction and expansion problems caused by high temperatures.